| 
          
            
              
                
                  
                    Each year according to the International 
                      Association of Independent Tanker owners, known as Intertanko, from 1990 to 2000, an average of 400 tankers break  
                      apart at sea or barely escaped that fate. The leading cause 
                      was collision, but nearly as many suffered from Unknown Structural  (weld failures) or technical problems.
   Ship building. MIG and Flux Cored Weld Issues Weld Resolutions. 
                      
                           
 
 The   Canadian  yard managers & engineers and supervisors were not aware that their yard  
                      was in  a state of Weld  Process Chaos:  
 During 
                        the nineteen nineties, I was invited to provide a weld evaluation for a Canadian Ship Yard that  was building Frigates for the Canadian 
                        Navy. The weld engineers 
                          and  management at the  ship yard had allowed the use of poor weld practices and did not appear to understand the 
                          concepts of MIG or FCAW process controls or even understand the fundamentals of theses two important  weld processes that were utilized for most of the welds on the Navy Frigates. I also found it interesting 
                          that the management that lacked the requirements for Weld Process Ownership,did not allow the weld engineers that were employed in the yard  to tell 
                          the welders what to do. 
                          The bottom line was the ship yard weld quality and productivity was run by the yard welders, and the majority of these welders  lacked an 
                          understanding of the MIG and flux cored processes utilized. Lets first examine ship yard weld costs.
 
 Few managers and supervisore in ship yards are aware of what welders should be depositing each shift.
 
 When you weld a 1/4 (6mm) horizontal fillet weld with MIG or flux cored wire, you provide a "single pass weld" with either a MIG Spray  weld, or a flux cored wire using a high wire feed - volt setting. Both of these weld processes would provide  
                                      a  typical weld deposition range of   approx.  9 to  12 lb/hr.
 
 WHAT WELDERS SHOULD BE DEPOSITING EACH SHIFT...In any ship yard, when welding fillets, multipass fillets or groove welds, (good groove welds use 1.4 fillet wire feed settings), and with a 20 minute hourly arc on time, welder who is well managed, would deposit on average  20 to 24 pounds of MIG or flux cored weld wire per shift.
 
 Note. You will find that most ship yard welders  average 8 to 15 lbs of wire per-eight hr. shift. Extensive simplified weld data availabthis
 
 
 
                      If you understand process controls weld costs are easy.
       WHATSTHE MIG or FLUX CORED DAILY WELD PRODUCTION 
                      EFFICIENCY AT THE AVERAGE SHIP YARD?
 An acceptable  average MIG and Flux Cored weld wire usage per eight shift day for weld shops welding parts >  4 mm should be 20 pounds of weld wire  per-shift. A highly effiicient weld shop would be depositing > 24 pounds per-shift. Those shops that weld thinner parts  < 4 mm,  should be depositing on average between 8 - 10 pounds per shift.
 
 To compete in a global weld market in which the Chinese are now welding bridges for the state of California, management should have the capability to understand both the weld quality requirements and the weld deposition rate potential per welder. In a  large weld shop where welders weld and someone else does the fitting on parts > 4 mm, if you multiply the  total welder man hours   by 3, you will see how many pounds of MIG or flux cored weld wire should be deposited daily.             Then call the purchasing manager, ask them to let you know how much wire was purchased and used in the previous year. With this information  you will quickly get a grasp of where you are from a weld reference the weld you are depositing and your real weld production potential. 
 Note: 
                      Most of the large MIG - flux cored weld projects that I visited in 13 countries were  only achieving 40 - 60% of the welds that they should have been daily deposited. To be aware of how to attain the weld production goals and train the weld personnel on how to achieve  these weld production goals, please visit my MIG and Flux Cored Process Control training resources                           Note: Single pass welds are fine with horizontal fillet welds up to 5/16 (8mm). When the horizontal fillet weld size required is larger than 5/16, the weld shop would have concern for side wall fusion and the solution is to  weld the large fillets using 1/4  (6mm) multi-pass stringers.
 Note if you are looking for the best weld quality, do not allow manual welders to use weaves for any position  pass fillet or groove welds above 5/16 as lack of fusion may  occur and excess weld heat (weaker HAZ - distortion ) will be generated.
 Note Weave allowed for root and caps only.
 
   I dont believe that there is one global ship yard that has  taught their weld personnel the   weld process controls and best weld practices required for weld process optimization.   
 
 A COMPLETE LACK OF WELD PROCESS CONTROL EXPERTISE WAS EVIDENT IN MINUTES: In the Canadian  ship yard,  the two prime weld processes that were daily utilized  on the majority of the welds  were using INCORRECT WELD PARAMETERS & INCORRECT WELL PRACTICES.
                    For example to 
                    make the 1/4,  (6.4mm) carbon steel, horizontal fillet welds on the Navy Frigates, the  
                    welders would typically apply TWO  WELDS that were carried out with TWO  DIFFERENT WELD PROCESSES, MIG and Gas Shielded Flux Cored. 
 
  At the Canadian yard, to make a simple horizontal, steel 1/4 fillet weld ON > 1/4 steel parts, the welders would  first make a COLD, MIG  "Short Circuit, close to globular weld"  that provided a deposition rate of 6 lb/hr. This cold weld was better suited to welding  thin gauge 0.080 (1.8 mm) sheet metal parts. 
                        This first weld pass   had to result in  Frigate welds that had  extensive lack of weld fusion. 
                        To finish the 1/4 fillet welds, the welders would do something which revealed the complete lack of weld control in this Canadian  Navy yard.  For the second weld pass on top of the MIG, cold short circuit  weld, for some crazy illogical reason, the welders had been told to change their weld process to Gas Shielded Flux Cored. With their flux cored wire, the welders would use  the same wire feed and voltage that they had used with the MIG wire, these guys had just ued one incorrect setting for any weld or any process). 
                        T 
 The low flux cored wire feed and volt settings used by the welders ensured  that the ship yard welders were placing a COLD flux cored weld  over the top of the COLD MIG short circuit - glob weld..
   IF THE MANAGERS, ENGINEERS AND SUPERVISORS WERE NOT MANAGING THE WELD PROCESSES, WHO WAS?   
 
 SOMEONE FORGOT TO TELL THE CANADIAN NAVY PERSONNEL AND  SHIP BUILDING MANAGEMENT, "THAT  
                        WHEN  THEIR WELDERS USE INCORRECT, COLD WELD PARAMETERS, THAT THEY WILL  
                        END UP WITH A COSTLY LACK OF FUSION AND EXTENSIVE WELD POROSITY WELD DEFECTS. THEY WILL END UP WITH EXTENSIVE WELD  REWORK AND THE POTENTIAL FOR STRUCTURAL WELD FAILURES.
 
 The great majority of the  two pass fillet  welds made on the Canadian Frigates would reveal   extensive  lack of weld fusion and weld porosity. Also the cold  flux cored weld settings when used on most of the ships welds would result also in extensive lack of fusion and slag entrapment.
 
 Each day at this ship yard using inappropriate weld settings and weld practices, the 200 to 300 ship yard welders would have produced   thousands of feet of  single & multiipass  welds on the Navy frigate. It 
                            should come as no surprise to those reading this, that as I walked around the yard and talked to the key weld decision makers and to the welders, I did not manage to talk to anyone who  knew what MIG Short Circuit, Globular or Spray Transfer was, and even fewer understood the optimum working parameter range and best weld practices that was required for  the E71T-1 flux cored wires..
 
 Note: The majority of the Canadian Frigate  MIG and Flux Cored welds  only required visual surface examination, so lack of weld fusion and internal weld defects were not revealed.
 
  BACK TO WELD COSTS: THE AVERAGE WELD DEPOSITION RATE AT THE CANADIAN YARD WAS 5 LB/HR. WITH A 20 MIN ARC ON TIME THATS ABOUT 1.4 LB/HR OR 11 LB IN AN 8 HOUR SHIFT AND FOR THAT CANADIAN SHIP YARD THATS ABOUT 50% LESS METAL THAN A WELL RUN WELD SHOP WOULD DEPOSIT. 
 The MIG short circuit 
                (SC) - globular parameters that were used with the 0.045 (1.2mm) wires were set at the SC typical wire feed 
                rate of 210 to 280 ipm, (average approx. 5 - 7 lb/hr) with 180 to 230 amps and   19 to 22 volts,  
                        (20 plus volts promotes glob and excess spatter).. Without question, the majority of these welds would result in extensive lack of weld fusion, and other internal defects on 
                        any carbon steel 
                        parts > 4 mm. The flux cored data that also use  these settings was better suited to a poor quality low setting "vertical up weld,"  The average flux cored weld deposition would have been 4 - 6 lb/hr.
 
 
 
 Ed's - Em's MIG Spray, Single Pass fillet. 045 wire. 450 ipm - 28 volts. 12 lb/hr 
    COSTS: THE AVERAGE  DEPOSITION RATE AT A WELL RUN WELD SHOP THAT WELDS THE SAME PARTS WOULD BE 9 - 12 LB/HR.
 For those few mgrs, engineers or supervisors . that have an interest with weld process control and cost info.  To make a single pass, horizontal,1/4 fillet with the 0.045 flux cored wire,  you would typically  set approx. 500 inch/min, (average 9 - 10 lb/hr) with 27 - 28 volts. For the MIG process a wire feed rate of approx. 420 - 450 inch/min, (average 11 - 12 lb/hr).
 
 
 
                       Every global ship yard has a great opportunity for weld quality improvements and weld cost reductions. This was applicable in 1960 and it will be applicable in 2020.    Its possible that aby   Navy's worst enemy 
                    may be the  welds on its ships..
 
 
                    
                      . .  IF MANAGEMENT, ENGINEERS &  SUPERVISION DO NOT FULLY  UNDERSTAND "WELD PROCESS CONTROLS AND WELD COSTS", THESE SUBJECT ARE  NOT LIKELY LIKELY TO BE PART OF THEIR THE DAY TO DAY WELD SHOP CONVERSATIONS: 
 To put salt in the Canadian Frigates ship yard management wounds, every weld produced with 
                      the low wire feed (low deposition rate) settings, took each of the 250 - 300 welders approx. 200% longer than it should have.
 
 This 
                      Canadian yard  ironically spent over a million dollars annually on "welder training" which resulted in  extraordinary poor weld productivity and   quality. I estimated that  the low weld deposition rates and unnecessary weld rework would readily result in  over 15   to 20 MILLION  dollars per year on unnecessary weld labor and rework costs. 
                          I delivered my weld report to the yard management. The report provided waht the issues were and the required data and practices for the yard to get it's 
                            welds to the quality and productivity that they could readidly  attain.
 
 
  I 
                              was later informed that my weld report never got as far as the first manager who reviewed 
                              it. The report  then disappeared into the nearest garbage container. I was later told  by the key weld suppler to the yard that the manager was too embarrassed to present the report  to his executive 
                                team, and also he  did not want the Canadian Navy Brass to be aware of the weld quality 
                                produced and the unnecessary yard over weld costs. 
 ALL WELD DECISION MAKERS HAVE A RESPONSIBILITY TO  THEIR ORGANIZATION TO LEARN AND FOCUS ON THE REQUIRED  BEST WELD  PRACTICES - WELD PROCESS CONROL EXPERTISE. 
                        USING  MY SELF TEACHING -  TRAINING RESOURCES,
 
 From Canada to the USA, the ship yards have much in common.    
 
                  
                     INTHIS USA SHIP YARD, I PROVIDED MY WELD PROCESS CONTROLS - BEST WELD PRACTICE TRAINING PROGRAN WHICH IN A FEW MONTHS REDUCED THE OIL TANKER  
                      / CONTAINER CONSTRUCTION WELD REPAIR COSTS BY APPROX. 60%. 
 In building a fleet of oil tankers / container ship at the Navy Yard in Philadelphia, this global ship building company had budgeted a few hundred thousand dollars per-ship  for its projected  ship weld repairs. In 2007, when I was called in to help the yard with it's weld quality and productivity problemsm at this  time,  the   yard's mostly flux cored weld repair costs per vessel   was between eight and ten million dollars.
 
 The prime manual weld process used at this USA ship yard, was the Gas Shielded Flux Cored weld process. Most of the 300 welders in the yard used E71T-1 (1.2 mm) 
                          flux cored wires to weld all position, Vee Groove, 
                          9 to 25mm, steel joints that used   
                          ceramic backing for the open root welds. Like 
                            many   ship yards, the Aker management,  engineers and QA personnel knew little  about either the flux cored and MIG processes, their experience was usually with the SMAW (STICK WELD) process, a process in which welder skills is the prime requirement and minimal weld process control expertise is requied.
 In this yard, as it is with  many large scale weld projects, the flux cored welder training focus was   on the "welder's skills", and the skills taught had more to do with  the practices used with the SMAW process. The skills taught in the yards training facility were  not the optimum best practices  required  for all position flux cored welds and ceramic backing. As also is common in most  ship yards, the training provided no best no weld process controls, so the welders do what many have done for decades, "played around" with their weld controls.. 
 
  To work at this US ship yard, the welders had to pass an ABS all position, flux cored 
                        weld tests with ceramic backed vee groove welds, (6 mm root gaps) The  welds were to be made in accordance with the  yards weld specs / procedures. 
 OFTEN, "WELD QUALIFICATION TESTS" ARE IRRELEVANT AS THEY WILL HAVE LITTLE IN COMMON WITH THE WELDS MADE ON THE ACTUAL WELD APPLICATIONS.
 
 This  ship yard was managed by managers - engineers  and supervisors who while comfortable around a box of stick electrodes,  lacked the awareness - expertise of the unique requirements necessary to attain consistent, 
                        optimum manual or automated flux cored weld quality for  those ceramic backed steel groove welds. In the last five decades, the  lack of valuable weld process control - best practice expertise appears to be  common with weld decision makers on   large scale weld projects, and it should not take a rocket scientist to figure out  the future weld liability and the weld cost consequences.
 
 
 THE EXTRAORDINARY OVER BUDGET USA SHIP YARD WELD REWORK COSTS,   WOULD NOT CHANGE TILL I INSISTED THAT  ALL 
                              THOSE INVOLVED, INCLUDING THE FRONT OFFICE PERSONNEL  ATTEND MY PROCESS CONTROL TRAINING SO THEY COULD ALL WALK THE SAME PATH TO WELD PROCESS OPTIMIZATION.
 
  For the Flux Cored Weld Best Practices - Process 
                      Control Training Program  that I was to present, I insisted that not only  the welders, but also the repposible supervisors, engineers, managers and QA personnel in the yard participate in my unique 
                         training program. 
 Note for ship yard bean counters, this weld process training program does not require weeks, months or years it requires approx. eight  hours, "four   hours classroom and four  hours hands on".
 
 With my best friend Tom O'Malley assisting, (Tom in light blue jkt on right died in Feb. 2015). RIP TOM always will love your spirit and freindship and keep your eye on me. In a few weeks Tom and I  completd the training   for approx.  300 welders and for the yards newly eductated weld decision makers.
 
  THE SHIP YARD WELD SAVINGS RESULTS WERE PROVIDED: After my training was complete, the senior ship yard managemnent made the ship yard QA department manger responsible to  evaluate the weld cost saving results through the weekly reductions with the ship's weld rework.  Three to four 
                      months after  the training, the ship yard 
                      QA department  indicated a 50 to 60% reduction 
                        in the required weld rework per-ship. As the weld rework was still decreasing, further cost reductions were projected and dont forget I have not discussed the 30% Increased weld productivity that was attained from the welders using the correct (higher) wire feed settings. 
 
 Ed's MIG and flux cored self teaching or training programs are available at this site
 
 
 
 
 
  HOW MANY MORE DECADES WILL WE REQUIRE FOR MANAGERS AND TRAINERS TO REALIZE THAT SMAW HAS NOTHING IN COMMON WITH MIG OR FLUX CORED? 
 It's not unusual 
                                  for weld personnel to have many weeks of flux cored hands on  training at global  ship yards, and then 
                                  after  the training completion, find that when it comes to MIG and flux cored welds, the  weld personnel   will do the following;
 
 [a] 
                                            PLAY AROUND: Many welders will play around with two simple MIG or flux cored weld controls that have not changed in sixty years, The welders and their supervisors will  rarely be able to dial in the optimum flux cored weld settings 
                                            for the 
                                            Vee groove root, hot pass, fill pass and cap passes. And don't ask that welder to tell you the optimum MIG settings for that common horizontal 1/4 fillet weld.
 
 [b] NOT BE AWARE OF PROCESS CONTROLS AND LIMIT THEIR  WELD ADJUSTMENTS: Instead of optimizing the welds through the MIG weld equipment controls, many welders will   typically find one weld setting  and if they cant find one, the welder  may copy the settings of another welder although that welder is doing a very different weld. A welder should be able to make optimum weld parameter changes that suit   the conditions they have to deal with. Imagine how annoyed  a machine shop supervisor would be, if his lath and milling machine operators used one control setting for every different job they were given.
 
 [c] NOT BE AWARE OF THE BEST WELD PRACTICES? As they have rarely received best practice training, it should be no surprise that most MIG and flux cored welders will not utilize the optimum weld practices - techniques required for either the MIG or flux cored process.
 
 [d] NOT BE AWARE OF THEIR INFLUENCE ON  WELD COSTS? Lack of management, engineer, supervisor and welder awareness of the wire feed to weld 
                                            deposition relationship and the weld deposition rate potential for the common flux cored or MIG welds certainly makes it difficult to be competitive and to control weld costs.
 
 
 A BREAK DOWN OF THE WELD COST SAVINGS GENERATED FOR THE USA SHIP YARD:
 Examine 
                      the following ship yard weld cost reduction and the weld benefits attained from my unique process 
                      control training program. Many mangers may not be keen on training as in the past the weld training did not improve the weld quality or productivity. (Managers, if you dont provide the right training you don't get the best results). 
 Training weld personnel is costly, and the larger the weld shop the greater the training costs. With this in mind it should be no surprise to find  some one in management that may be  worried about the production man hours lost when training is required for their employees.
 
 Weld Best Practices - Process Control Training Costs:
 
 The Acker flux cored welder training program I produced, required 300 x 8 man/hrs. = 2400 
                            man hours at an approx. weld labor overhead cost of $30/hr. The base labour training cost for the ship yard training was  $72,000. To this add the actual training and material costs which was approx. $100,000. 
                            Total training costs for the 300 welders was approx. $172,000.
 
 Shipi Yard Weld Rework Cost Reduction Savings Per-Ship:
 
 The initial weld improvement results revealed an instant  savings of six million dollars. With management - engineering and supervision focus  on maintaining the skills - process control expertise required, the reduction in weld rework costs will continue and could easily reach 7 to 8 million dollars on each tanker or container vessel produced.
 
 Ship Yard Weld  Cost Reduction from Increased Weld Productivity:
  An unreported weld cost fact from the Aker yard was the changes that I created  in the 
                      development of the new weld procedures. My weld procedures  generated a dramatic increase in the gas shielded flux cored wire feed rates, 
                      (increasing the weld deposition rates). The new weld procedures increased the daily weld productivity 
                      potential per-man in the range from 30 to 35%.  If the managers and supervisors kept their focus on weld deposition potential, it would be easy for the yard to attain a weld labor cost reduction per ship of between four and five million dollars.
 Ship Yard Weld  Cost Reductions from welding the Correct Size Weld Joints:
 
 If this  ship yard manufacturing management, engineers, supervisors and fitters, decided to provide the weld joints in accoradance with the actual design dimensions and tolerances, it would be easy to reduce the weld labor and rework by another 1 to 2 million dollars per-ship.
 
 
 Ship Yard Management - Ownership - Responsibility - Accountability.
 
 Note I  took > 3000 hours to develop both the Flux Cored - MIG training programs available at this site. My unique Weld Control Clock Method  simplifies the training or self teaching. This  is  a method I  developed over three decades and the programs can be used for any MIG or gas shielded flux cored alloys or applications. Programs available here 
 My  
                      thanks to the Aker Kvaerner management 
                        who first resisting the required weld changes rhowever out of budget desperation they finally allowed me 
                        to provide the process control welding changes that made them look like they knew what they were doing.
 1945 0R 2015, hopefully one day  they will get it right.
 
                     
   
                                          In 
                      the good old STICK (SMAW) weld days which for some projects is still ongoing,  some steel ships broke apart at the welds before they left the dry dock. 
                      These and the catastrophic structural failures that occurred at sea, were often a result of 
                      low hydrogen cracking, poor weld practices, steels with poor chemistry, (high impurities) and design ignorance of plate - weld mechanical 
                      properties and the influence of cold temperatures.
 Since 
                      the 1980's the majority of ships have been built from high quality, low carbon 
                      steels and welded with low hydrogen SMAW - MIG and flux cored consumables. You would 
                      have thought these two important attributes would have resolved the catastrophic 
                      ship failure issues that have occured since 2008. 
                      Lets 
                        face it, welds on low carbon steels, are typically supposed to surpass the strength 
                        and ductility of the base steels, and if the welds are applied correctly,
                        the welds and surrounding base metals are not supposed to fail.
 
 The weld reality is however different, while many ships and oil platforms have plate and pipe 
                          that will be affected  by rust, during unforeseen circumstances or severe weather 
                          while the  steel parts impregnated with rust  stay intact, the welds and weld  heat affected zones will  tear apart like a wet paper 
                          bag.
 
 03/ 
                              2007:Of course its possible that the global ship building management lack of best weld 
                              practices and lack of weld process controls expertise is partially responsible for many of the catastrophic 
                              failures that sink all types of ships each year?
     
 ABOVE, A COMMON SHIP YARD FABRICATION  ATTITUDE, TOO OFTEN CREATES OVER SIZE WELDS AND OVERSIZE WELD HAZ. 
    
                    
 
  THE USA SHIP YARD HAD  EUROPEAN, HIGHLY QUALIFIED SHIP BUILDING  MANAGEMENT AND ENGINEERS, AND A  LARGE QA  DEPARTMENT, YET THEY  ALLOWED WELD JOINTS LIKE THIS.. 
 It's 
                        a weld reality that the QA departments in many ship yards and oil platform yards, 
                        while looking for weld defects the QA department personnel will place minimal focus on the design fit tolerances and the quality standards that are supposed to be applied 
                        to the part fit and weld edge preparations. Its also a fact that pre-heat and interpass weld temperatures are often not utilized when they could provide good weld / part benefits.
 The 
                        picture on the left is a flux cored weld  edge prep (made in 2007) at a major USA ship  yard. Yes the gap opening is larger than one inch and  that is ice and water surrounding the weld joint. On this joint there was no weld preheat applied and  no interpass weld temperatures applied during the numerous welds. To add to this pathetic weld situation,  the mill scale was left on the groove edges and cutting oxides  were left on the groove  surfaces.  Weld joints like this shoud never  be 
                        allowed especially in these industries.
 
 
 
  2007: WE SHOULD ALL KNOW THE ANSWER TO THIS QUESTION. 
 DOES A STEEL BACKED, 6 mm    ROOT GAP ON SHIPS PLATE, PROVIDE THE SAME HAZ MECHANICAL PROPERTIES, WHEN THAT  ROOT GAP IS  ALLOWED TO INCREASE IN THE RANGE OF 8 TO  25 mm.?
 
 WITH THE EXTRA WELD PASSES FROM THE OVER SIZED ROOT WELDS, THE RESULTING , INCREASED WELD HEAT AND INCREASED WELD DEFECTS WILL HAVE DRAMATIC NEGATIVE RESULTS FOR BOTH THE  WELD AND WELD JOINT MECHANICAL PROPERTIES. WITH THIS IN MIND,  YOU WOULD EXPECT THE SHIP YARD ENGINEERS TO  PROVIDE STRICTER SHIP YARD MAX. WELD DIMESION REQUIREMENTS AND ENSURE THE CORRECT FABRICATION AND WELD CONTROLS ARE APPLIED.
 
 Weld - steel qualification tests for critcal ship weld plate joints are typically taken from optimum weld joints with  specified max root gap openings. It would be of interest, if the navy and ship building industry, both   of which will often turn a blind eye or enable welds  that allow extensive oversize root tolerances, to provide the necessay research to find out the following;
 
 [a] 
                        what  the negative weld heat influence will be from the numerous extra weld passes.
 
 [b] what the negative consequences will be from the combinations of the extra weld defect buildup and extra weld heat would be on the mechanical properties,
 
 [c] what is the real world maximum root gap cut off point before the mechanical properties will be outside those specified by the ship's designers? After this research, I would anticipate a dramatic reduction in the open root tolerances, more focus on interpass temperature controls and and stricter part fit controls in the fab shops.
 The additional HAZ weld heat provides many questions about the mechanical properties being achieved with many weld joints. Every time I see photos of ships that unexpectantly tear apart at sea, and you see that nice clean straight tear where the welds HAZ is located I think about these weld situations.
 
 
 
 
 
 
                      
                        
                          | Quick, before it sinks. Examine how nice and clean the catastrophic 
                            failure 
                            tears are, 
                            right down those  weld seams and their weld HAZ.. |  
 
                
                  
                    
                      
                        
                          | 
                                                          There is only one weld standard and it should apply to all ship welds. 2007: 
                              With all ship welds, we need more focus on the weld quality not subject to internal weld evaluation and also on the steel mechanical properties being attained especially with  oversize weld's HAZ. |    
                  
                     
 2007: It's a weld reality that in ship yards and on other mega oil and natural gas projects,  that many unacceptable variables will 
                        happen to the weld joints and welds and those "variables that impact the welds are typically not  considered in 
                        the pre-qualification welder procedures generated".
 
 When the weld personnel are not supplied with the 
                        process control training necessary to deal with the weld shop variables, the welders will typically play 
                        with the weld controls and not provide optimum weld settings to deal with the weld situations.
 
 Weld Quality Standards will have a different meaning for each 
                          company that builds ships or oil platforms. One thing most QA departments will have in common, is their weld quality focus will be on "finding rather than preventing weld defects".
 
 I often wonder if  we have learnt anything about arc welding ships in the last six decades?
 
 29/07 Note from Ed:
 Designers 
                                and metallurgists will typically look to the ship's design, steel - alloy compositions, 
                                environment, water temp, weather and the formation of rust for the causes of 
                                many catastrophic ship failures. I wonder how many designers will take into account 
                                that on any global built ship the NDT that examines the internal weld quality is only applied to a small percentage of the ships welds.
 
 IRRESPECTIVE OF THE WELD CODES UTILIZED, COMMON SENSE WOULD ENSURE THAT ENGINEERS CREATE PRE- QUALIFICATION WELD TESTS THAT ALLOW FOR THE REAL WORLD              "WORSE CASE   WELD SITUATIONS & VARIABLES THAT ARE LIKELY TO TAKE PLACE WITH THE INTENDED WELD APPLICATIONS".
 
   Poor Welds and Lawers Love the Liability Consequences.
 
 Dam, it broke apart right along the  weld seams, and that was not much of a storm.   
                  
                    Many ship yards forget that oversized 
                      weld joints require many  more  weld passes producing  extra  weld heat (larger HAZ) and more  internal weld defects. An increase in weld defects with a weaker plate  HAZ is not a combination any organization should accept. 
 While the ABS code, Navy or any ship builder will stipulate  a maximum root gap allowance in most instances its rarely adhered to. The weld reality is  weld and  material metallurgical weld qualification tests should always be carried out with the  maximum allowable root gaps and those root gap dimensions must have strict min and max tolerances that must be followed.
                      Unfortunately as the photo on the left indicates this  is the real world weld joints that are rarely shown in the engineers office.
 
 
 When building merchant or naval vessesls, the too common poor control of the weld joint will often leave edge preps that have irregular, oxide and scale laden surfaces. The edge preps may also not have the required pre-heat on those cold or wet days. The wet plates or cold  plates, lack of pre-heat combined,  oxides - scale and frequent lack of interpass controls with innapropriate  weld parameters, techniques and practices,  and the usual lack of care of the consumables  leads to extensive lack of weld fusion, weld slag inclusions,  porosity and lower than required plate / weld mechanical properties.. 
 As  only a small portion of a  ship's welds are typically subject to NDT, both the navy and merchant navy would do well to put a renewed focus on weld process control training that is directed at weld defect prevention and good weld practices. All managers need to be aware that it's just as easy to produce optimum quality welds as it is to produce poor welds.
 
 
                  
                    
                      
                        
                          
                            | 
                              The  following are a sample of recent news paper or web reports 
                                  on 
                                  typical weld and related issues that have occured in ship yards. It's true that with large scale weld fabrications it should be no surprise that they are extensive weld issues. It just seems strange that few managers today seem to want to take opportunity  to take ownership ot their processes and control of the many variables  that can provide dramatic weld cost reductions for their organizations.
 
 |  
                          As reported by the Navy, on this vessel only 
                    one weld out of 
                    approximately 100 tested passed the NDT requirements.
 
                        
   
                        
                                                       Was 
                          the ship's or the Oil platforms demise from a freak 
                          of nature, or from the poor flux cored or MIG welds?  
 
                        
                          
                            
                              
                                | 
                                   MOST 
                                    DESIGNERS ASSUME THAT THE SHIPS OR OIL PLATFORMS THAT THEY                DESIGN, 
                                    WILL BE  BUILT IN ACCORDANCE WITH  
                                    THE DESIGN WELD SPECIFICATIONS  PROVIDED. 
                                    THE WELD REALITY IN SHIP BUILDING IS 
                      THAT FEW ARE.  
 LETS FACE 
IT'S DIFFICULT TO TEST AND CONFIRM THE OVERALL WELD INTEGRITY ONCE THE SHIP YARD OR OIL PLATFORM IS SITTING ON THE OCEAN FLOOR.
  The 
                                    sad reality in 2020. is the amount and type of weld defects typically found in a ship's construction, 
                                    will have has hardly changed 
                                  from the weld defects found  six decades ago. |    
                          
                                
                        
                          
                            | 
                              
  In 
                                  the 1940's, poor quality stick (SMAW) welds were the norm. The weld quality was further influenced by   electrode issues (hydrogen and quality concerns) combined with  poor quality rivets and steels,  and of course the lack of optimum SMAW weld practices that when combined resulted in   numerous Liberty ships that suffered from catastrophic weld & steel failures. 
 Seventy  plus years later, in general (there are of course exceptions) in the weld industry we have achieved what.? Today in 2019 we have a superior flux cored wires for  all position ship plate - pipe welds. We also have the MIG  process and good automated weld equipment. We  weld on far superior quality steels and alloys. However  due to the global lack of management / engineering weld process control expertise and lack of best weld practices, too many of the "we take no ownership" ship and oil platform weld management and their supervision still take weld advice from salesmen, allow weld personnel to "play around" with weld controls, accept  welds that are riddled with costly weld defects, and lack the understanding of the weld process weld production rate potential.
   
                                 
                                  <1960: 
                                    5000 liberty ships built, 1000 catastrophic failures most right down the weld seams.
 
 
  
 Decades later,oil platforms and ships for some strange reason sinking before their time.
  
 
 
 |    For 
                      those looking for the structural security attained from the double hull construction that 
                      will occur when building large ships or more costly ships, keep in mind that unless ship yards change their 
                      approach to weld best practices and process controls, the double hull ships may simply enable double the amount of bad welds. 
 
                      
                          
                            HOW RELEVANT IS THE  SHIP'S 
                          DESIGN, WHEN MANY OF THE WELDS ON THE SHIP WONT MEET THE DESIGN WELD SPECIFICATION REQUIREMENTS?  
 
 
                          
                            
                              | 
                                2006: 
                                  Each week one or two global ships sink, many as a result of weakened
 structures from corrosion. Rarely does anyone ask how many ships sink annualy as a result 
                                      of  bad weld practices, and why do ships appear to get torn apart in calm waters down the weld seams?
 |    
                          
 From my perspective I always avoid  the use of Chinease, Eastern Europe or S. American weld consumables 
   A note from E  
                        Craig. 03/2007:
 
 A ship 
                            yard may use half to a million pounds of flux cored weld wire each year, 
                            however it's rare to find a ship yard that has management and engineers who have established Best Flux Cored Weld Practices 
                            and implemented effective Weld Process Control Training for their  weld personnel.
 
 
 
  How many  ship yard managers and supervisors 
                                are aware of 
                                the following? 
 For 
                                    decades the global shipyard focus has been on the welder's "stick welding 
                                    skills while the majority of global ship yard welders that weld with the flux 
                                    cored - MIG process, lack  weld best practices - process control and consumable expertise.
 
 Too 
                                    many weld personnel in ship yards will daily use the unsuitable weld techniques and skills that they learnt 
                                    with the lower weld energy, lower weld deposition stick welding process.
 
 With the 
                                      flux cored process, the variable size root gaps and the placement of weld across none 
                                      conductive ceramic backing requires unique weld considerations and specific instructions 
                                      for the all position, root, fill and cap weld passes. A visit to any global ship 
                                      yard, would reveal that few welders, supervisors or "engineers" are 
                                      aware of the flux cored process and ceramic requirements necessary for consistent 
                                      weld optimisation.
 
 
  2008: 
                                        It's a sad comment in a time when MIG and flux cored weld defects inundate ships 
                                        and oil platform construction, that at many global ship yards, weld apprentices 
                                        will spend more time practicing with stick electrodes than they will with MIG 
                                        and flux cored consumables. It's also a weld reality that many weld instructors 
                                        when providing MIG and flux cored training, will teach the apprentices inappropriate 
                                        stick welding practices and techniques. You dont want to ask any weld instructor in a ship yard this fundamental MIG question. " What is the wire feed and current start point of spray transfer with the world's most common 0.045, E70S-6 MIG wire and argon - 20% CO2".. 
 
 
 YOU CANNOT CONTROL THE WELD QUALITY - PRODUCTIVITY 
                      AND 
                      COSTS 
                      IF YOU CANNOT CONTROL THE PROCESS.
 
 
 
                      Try the following fundamental weld process questions.
   [] 
                      Fundamental MIG 
                      Process Control Weld Test
 [] 
                      Fundamental Flux Cored Process Control Weld Test.
 []  
                      Ed's Unique, MIG and Flux Cored Weld 
                      Process Control Training Resources   
                      It looks like someone needs help with the ship fabrication and the welds. 
                        
 Accountability - Responsibility - Ownership....36 million in repairs and 400 million over budget                  & the seniior management and engineers are  still on the job.
 The above Navy vessel failed to complete a series of sea trials 
                    and required $36 million in repairs. The 
                        ship was been plagued by mechanical and structural problems since the Navy 
                        took ownership and it was also two years late. The  ship was built at 
                          a cost of $1.2 billion and was, roughly $400 
                            million over budget.   
                        
  IF I WAS MANAGING A SHIP YARD IN THE 21st CENTURY, APART FROM CHANGING THE TRAINING DEPARTMENT AND THE WAY THE WELDERS TAKE THEIR WELDER QUALIFICATION TEST I WOULD ALSO  LIKELY CHANGE THE THE QA DEPARTMENT OPERATES. 
 For 
                        decades, on many mega 
                          weld projects, a typical 
                          QA / CWI primary function has been to "find fault after the weld completion". With minimal cost,  managers or engineers could provide my Weld Process Control - Best Weld Practice Training Program for the weld inspection personnel so they learn the requirements necessay to prevent  the MIG or flux cored weld defects.
 
 The  reduction in weld defects, less weld rework and much lower NDT costs, would have a big impact on any companies  bottom line.
 
 If the guys in the front office don't fully understand  weld costs, who is going to  understand the requirements necessary to attain optimum quality welds at the lowest possible cost?.
 
  There are ten individuals comprising of  managers, engineers and supervisors having a weld meeting in  the ship yard managers office. The  meeting was called to discuss the reasons for the increasing weld costs associated with the weld rework. Most of the welds are made on fabricated components that require simple 1/4 flux cored fillet welds. 
                      The weld procedure is passed around the table with information on the consumable type and size, the  wire feed rate  and the volts  being utilized. There is much finger pointing at the afternoon shift  guys on the shop floor The discussion  is heated and tempers are on the rise. The manager is a pragmatic individual who admits he knows little about weld costs, he stands and hits the table,  looks around the room and says, "gentlemen there appears to be much process confusion here and too little process little expertise, is there one of us in this room that can tell us  the real cost of a 1/4  
                        fillet weld one meter in length"?. The room becomes very quite. 
 You know that if you were in that meeting, 
                        instead of the few minutes to provide the correct answer,  it   would likely  take many hours of more discussion and then the answers provided will be all over the place. Then again, possibly the manager should never have asked the question in the first place as he is part of the problem.
 Note 
                        from Ed / Em, NRA members, please don't shoot the messanger. 
 Sometimes I feel that my comments 
                            on this site may be seen by some as  a little too harsh and critical, however there is a reason 
                            this site is called "weld reality" and I don't just criticize, I provide 
                            highly effective practical weld quality - productivity and cost solutions. To those who are interested in weld best practices 
                            and process controls or weld cost simplification, click 
                              here.
 
 Every weld shop should be concerned about  Weld Costs and Weld Liability Consequences?
 
 For 
                      those weld shop managers and engineers that live behind glass walls and are rearing up in defensive exasperation 
                      at my hands off, inexperienced manager - supervision and engineer comments, and my  criticism for the general lack of global lack of process control - best practice expertise, 
                      please remember that their will be thousands of weld shops this year that will have to deal with lower weld labor costs generated from other companies in other states / provinces or countries. These same shops will have over  
                      budget weld costs issues, inconsistent and poor weld production efficiency, over budget  NDT costs 
                      and extra weld rework costs.
 The typical common unexpected weld - part issues will of course lead to tighter 
                      production schedules which typically makes the weld situation worse as the weld shop supervision now has to drive 
                      more production before quality. And lets not forget, the  lack of process ownership ensures all involved will continue to work 
                      too many hours and loose too much sleep. 
 
                      USED TO BE SANDY BEACHES AND  FIELDS OF WHEAT, WELD LIABILITY CONSEQUENCES ARE MANY..
  
   I 
                      wonder how many weld shop managers, supervisors and engineers would last 
                      in their jobs, if all the welds they were responsible for were daily given a 100% UT 
                      or Radiograph examination? 
 
  
 
 
                      
                        
                          
                            
                              | Every 
                                person who makes a weld decision, should learn weld process 
                                controls and understand the requirements to  prevent defective welds 
 |     
 With 
                      all the money Ed made from 
                      his weld consulting, he finally   made the  down payment on his dream "house 
                      boat".  .
 
 
 
 
 $25 an hour for the welder and his weld on the left was acceptable.
 
 
  
 
 This 
                    ship yard welder during his annual welder requalification produced  the above (left) vertical up flux cored weld. This was a welder who  had passed his ABS welder qualification test three years ago. I trained him for eight hours and  his is weld is shown on the right. 
                      
                                                    
                    
                      | 
                        
  The weld equipment and consuambles purchased in a weld shop are 
                            always a reflection of the weld  or fabrication managers and engineers weld expertise.
 Take a moment look around your weld shop. Watch as the weld personnel "play with their  MIG and flux cored weld controls". Evaluate 
                              why the shop is  using a wide variety of unnecessary weld consumables and weld equipment.
 
 Visit the gas cylinder rack and ask your self why there are more than two gas mixes. Chat with the purchasing mgr. and find out how much was wasted last year on grinding wheels and other equipment used for cleaning welds.  And last, find out how much was paid last year for service, repair and maintenance costs" associated with the electronically sensitive 
                              welding  equipment and weld guns purchased.
 
 
 
 |  
                    
                      
                        
                          
 
 SHOULD 
                              THERE BE DOUBLE STANDARDS APPLIED TO WELDS, AND 
                              SHOULD THE 
                              SO CALLED CRITICAL SHIP WELDS BE MANUAL OR AUTOMATIC?
   
                     In my world there is only one way to make a weld on a ship or or make a weld to fabricate a work bench. The purpose of a weld is what? and  every weld produced should be optimum. Also why do managerd allow double standards for welds. For example iIn the ship yard, the structural welds in the center area of the ships are considered critical and subject to internal NDT weld evaluation. When NDT finds the weld defects in these welds, then more weld area become subject to the NDT. This has great weld cost repercussions for the ship builder so these center welds are given extra consideration and often the best welders are used on these joints. 
                    The point is in any facility that welds, if the correct training is provided there should be no best welders. Welding is not rocket science and there should only be one standard thats  applied to all welds. In 
                      many of the  weld facilities that I visit, I note manual welders typically will make 
                      long fillet or vee groove welds, when low cost, easy to set up, automatic Bug O weld carriage equipment is sitting on a shelf gathering dust. Controlling the weld speed, the weld weaves and wire stickout is essential if you want to attain consistent, optimum, uniform weld quality so its logical that this type of weld automation should be required. .
 
 In the encouragement for flux cored or MIG weld automation, 
                      one of the problems ship and oil platform companies have, is that due to lack 
                      of weld process control expertise, especially with the supervisors who should be providing the automation welder training, many welders do not know the correct data to 
                      dial in for the common 3/16 - 1/4 - 5/16 fillet welds.
                      Ask 10 welders in a yard what 
                       the MIG or flux cored "wire feed and weld travel rate settings" are for a 1/4 (6 mm) fillet weld, I guarantee you  will get 10 different answers.
 
 I have  assisted ship yards in the USA, and Canada and in Europe. At the yards I worked with Norwegian, Swedish, 
                            Danish, German, Polish Italian. English, Korean, Japanese, Yanks and Canadians 
                            and and don't forget those tenacious thick skinned, highly intelligent, ofteb over hairy, canny 
                            wee Scottish weld personnel. My experiences with these hard working, great 
                            characters indicated that the majority "played around" with their weld controls 
                            and none had ever received MIG or flux cored weld best practice - process control training, or training in  dealing with ceramic backed welds.
 
 From my ship yard  experiences, 
                            i developed thicker skin, an increased sense of humour and also developed the 
                            following  flux cored, CD. Best Practices - Process Control Training Resources. This  program is  applicable to all position, open root, steel and ceramic backed, pipe and 
                            plate, fillets and vee groove welds.
 
 For 
                            Ed's / Ens "MIG and Flux Cored" Weld Best Practices - Process Control 
                            Training resources.
 
  WELD MANAGEMENT AND WELD SUPERVISION SHOULD STARTS  WITH WELD "PROCESS & WELD EQUIPMENT AWARENESS:The first step for ship yard management to enable process ownership is for the managers to be aware of the level of weld process controls - best weld practice expertise and reponsibility of the key weld decision makers in the yard. Lets face it, If these guys knew what was needed to minimize weld defects and optimize weld productivity, then the weld and rework costs would not be out of control. 
                        Weld quality responsibility starts of in  the hands of managers, engineers,  technicians and supervisors. Typically a weak link in this process ownership chain are  the weld  supervisors. The irony is the supervisors  in a ship yard are often given more responsibilty for the welders than the weld engineers. 
 IN MANY SHIP YARDS IF AN ENGINEER IN A SHIP YARD THINKS A WELDER IS NOT CAPABLE OF PRODUCING 
                        THE WELD QUALITY DESIRED, HIS OPINION ON THAT WELDER WILL OFTEN HAVE LESS MEANINING THAN WHAT THE LESS QUALIFIED SUPERVISOR'S OPINION MIGHT BE.
 
 The second step for ship yard management is the managers have to be aware that the weld equipment, process 
                        and consumables used in their yard  rarely reach their  full weld quality and productivity 
                        potential.  The soution to this is in the training programs provided. Yard management have to be aware that for decades too many MIG and flux cored welder training programs provided have obviously not been effective, therefore training program changes are required and training focus is necessary on teaching all weld personnel best weld practices and weld process controls.
 
  FOR GODS SAKE DONT WASTE MONEY TESTING THEM, FIRST TRAIN THEM TO PASS THE BLOODY WELD TEST. The ship yard management needs to be aware that the stick 
                        (SMAW) weldesr with 20 years experience typically only brings incorrect techniques and 
                        bad weld practices to the MIG and flux cored process? There is a global shortage of welders. If  the weld management was aware that 
                      when  new welders walk into their 
                      yard, few will  have ever seen a ceramic backed root  gap. 
                      If something like ceramic backing is rarely utilized in other industries, that means welder's need to undersatnd the best practices and process controls necessary for welding on none conductive ceramics. 
 As its difficult to hire drug free welders, I dont want to waste ship yard money on testing welders to fail. Before testing  welders I would give them a one day training on the best practice and process controls necessary for the process and consumable used in the weld test. I would also provide the welders with the optimum weld settings. With this logic ship yards would have less issues hiring welders?
 
 As a matter of interest to the very few  managers and engineers that will read this stuff please note. Any "none welding person" with the right attitude and provided with the correct skills, best practices and process control weld training, should with "ten days training" be able to meet the all position code weld quality requirements necessary for the majority of MIG and flux cored welds in any ship yard.
 
 
 REMEMBER MANAGERS PLEASE ENSURES  YOUR SHIP YARD WELDER TRAINING ALSO DEALS WITH THE COMMON SHIP YARD WELD VARIABLES:
 
 
 [] 
                                While the ship yard management 
                                complains that their weld over cost per-ship is one to ten million dollars, they allow the ship yards fitters to produce oversize weld preps that typically add 30 to a 100% more weld.
 
 
  [] 
                                  In ship yards, thanks to lack of management / engineering focus on providing weld joints that are in compliance with the design, its not uncommon to find weld joints outside the code requirements with variable root weld gaps 
                                  from 
                                  8 to 25 mm. These welds will be made. How will the welders react to the techniques and parameter changes 
                                  required when welding across the extra size ceramic root gap. 
 [] How does 
                                  the welder react when the weld procedure does not require 
                                    preheat but the steel is either wet or cold.
 
 [] How does the welder react when 
                                    they have to put in twice as many welds that are specified in the procedure but 
                                    there are no interpass temp controls or information about additional weld passes?
 
 The 
                                    ship and oil platform welders are daily offered unique challenges by fabrication supervisors 
                                    who frequently know little about the flux cored or MIG process, supervisors who deliver weld joints that are simply not acceptable. To make their job 
                                    a little more complex, ship yard  welders often  have to make the challenging welds 
                                    on the poor oversized edge preps in 20 mph winds, 50 feet up on a scaffold, at minus 20 
                                    degrees.
 
 THE 
                                          FOLLOWING ARE A FEW WELD VARIABLES FOUND ON SHIPS AND OIL PLATFORM PROJECTS. THESE 
                                          VARIABLES ARE THE REASONS WHY WELDERS REQUIRE THE ABILITY TO WALK UP TO THEIR WELD EQUIPMENT AND INSTANTLY SELECT OPTIMUM WELD 
                                          PARAMETERS FOR THE THINGS  THAT ARE ABOUT TO IMPACT THEIR WELD QUALITY OR PRODUCTIVITY POTENTIAL.
 
 [] narrow, inconsistent root gaps,
  [] 
                                              variable and excess root gaps,
 [] a lack of understanding of the unique weld requirements
 necessary 
                                              for ceramic backed 
                                              roots with variable gaps,
 [] poor weld edge preparations,
 [] 
                                              welding on primer, paint, rust and cutting oxides,
 [] welding in an inconsistent 
                                              daily changing environment,
 [] difficult weld access,
 [] extensive difficult, vertical and over head welds,
 [] recieving weld joints from ship yard fitters who have never 
                                              been educated on the cost consequences, the quality liability potential or difficulties 
                                              of welding poor weld joints,
 [] supervisors, managers and engineers making 
                                              flux cored and MIG process and equipment welding decisions, when the reality is, 
                                              their
 weld knowledge never got past a E7018 stick electrode.
   
 
  PREVENTING 
                          HYDROGEN CRACKS: 
 What 
                          about those ships being built with the higher strength, low alloy and duplex steels? My 
                          gut instinct tells me that if a ship yard cannot control the weld issues that 
                          occur with the common low carbon steels, that ship yard will not provide any better controls 
                          on the higher strength or low alloy steels.
 
 In the good old days when 
                            welders deposited a leisurely three or four pounds of stick electrode a shift, 
                            they would be concerned about the sponge like flux on the stick electrodes and it's attraction for H2O. The stick electrodes were  protected 
                            (sometimes) in a heated storage oven or electric portable heater.
 
 Today 
                              MIG and flux cored welders on large projects should be depositing a minimum of 20 - 23 
                              pounds of weld wire a shift, yet few do. The reality is during the construction 
                              of many ships and oil platforms, that due to the  lack of 
                              supervision and lack of  management focus on attaining weld  deposition rates, most  welders will typically deposit only 
                              10 to 13 pound of flux cored or MIG weld per shift.
 
 
  Due to lack of logical flux cored or MIG weld best practices, 
                              few weld facilities will ask the welders to date  tag any new wire reels utilized. Whats normal is the flux cored wires are left out  in cold, damp or humid conditions for god knows  
                              how long. 
 In 
                              contrast to stick welding, which has the flux on the surface of the electrode, 
                              a primary benefit of the flux cored wire is the wire's flux is protected by an 
                              outer steel sheath. Some wire sheaths have a straight butt seam and it's easy 
                              for them to allow moisture through the seam, other wires like the one in the picture 
                              have seams that are designed with a little more consideration for keeping moisture 
                              away from the flux. 
                              With flux cored wires you get what you pay for.
 
 
 Gas 
                              shielded flux cored wires are supposed to be low hydrogen products, however that definition only applies as long as the weld wire is sealed in it's container. The flux in these 
                              wires or the wire surface can readily be be contaminated with moisture, and show me a ship yard where moisture is not an issue.
 Ed's 
                        flux cored, and MIG weld process controls - best weld practice training programs available  here also 
                        deal 
                        with the required best weld practices necessary for  weld 
                        defect prevention.
 
 
    
 
 
                
                  
                    WHAT 
                      IT TAKES TO GET HYDROGEN CRACKS STARTED:
 [] 
                      High strength steels. 
 [] Large root gaps, plate misalignment, anything 
                      that results in excess weld heat and excess stresses.
 
 [] Lack of control on the steel 
                      surface contaminates.
 
 [] Lack of control with preheat and interpass temp 
                      controls.
 
 [] Lack of history and protection for the flux cored weld consumables 
                      used.
 
 [] Lack of awareness of the potential for moisture 
                        in the welding gases utilized
 
 [] Lack of process and weld technique knowledge 
                        that could help minimize the effects of moisture
 
 [] Lack of concern for 
                        the quality of the weld gases used. Many cylinders and pipes supplying MIG and 
                        flux cored weld gas mixes, will contain  moisture.
 
 
 
 
  WITHOUT 
                              BEST WELD PRACTICES AND PROCESS 
                              CONTROLS, 
                              WELD CRACKS WILL  HAPPEN. 
 It's inevitable that on that on that one billion 
                                dollar naval vessel,containing high strength steels, that when that vessel leaves 
                              the docks, it will leave with  hydrogen cracks.
 
 To 
                                add misery to misery, the cracks will typically be in the weakened weld's heat 
                                affected zones, along side welds that are bound to contain lack of fusion, slag 
                                inclusions and extensive porosity.
 
 
   
                  
 
 
 
                    
 INVESTIGATION 
                    OF FRACTURED STEEL PLATES REMOVED 
                    FROM WELDING SHIPS.
 Corporate 
                      Author : PENNSYLVANIA STATE UNIV UNIVERSITY PARK Personal 
                      Author(s) : Williams, M. L. ; Meyerson, M. R. ; Kluge, G. L. ; Dale, L. R. Abstract 
                      : Samples of fractured plates from 72 ships were examined, and various laboratory 
                      examinations and tests were made on 113 plates selected from these samples. Information 
                      regarding the structural failures involved was obtained from the cooperating agencies, 
                      and the failures were analysed on the basis of this information combined with 
                      the results of the laboratory investigations. The ship 
                        weld failures usually occurred at low temperatures, and the origin of the fractures 
                        could be traced, invariably, to a point of stress concentration at a geometrical 
                        or metallurgical notch resulting from design details or from welding defects. Note from me: Fifty 
                      six years have passed since the above reports. When will  ship yards  get 
                      control of the common welding processes they utilize? 
                      
                        
                               
 
                    
                      
                        THE 
                            SUPERSTRUCTURE ON FFG 7 CLASS SHIPS HAS EXPERIENCED EXTENSIVE CRACKING. THE CAUSE 
                            OF THE CRACKING HAS BEEN DETERMINED TO BE A COMBINATION OF HIGH DESIGN STRESS 
                            COUPLED WITH POOR WELD QUALITY.
 
                    MANGEMENT THAT LACKHAD HANDS ON EXPERTISE WILL OFTEN TEND TO BE ADVISED BY SALESMEN...It was hard not to have a  good laugh in 2005 when I read in the AWS 
                      magazine about some VP in a ship yard  looking at purchasing a CO2 laser  for ship welding applications.                     This was a yard I was familer with. It was a yard in which the management and engineers were unable to get control of the simple to use, two control,  MIG - flux cored process. 
                        This was a yard where   the managers had a difficult 
                        time getting their weld personnel to feel comfortable with simple Bug-O welds, (mechanized 
                        MIG or flux cored carriage welds). This was a yard in which none of the weld management  understood the cost of a weld. This was a yard in which the  managers and supervisors lacked the ability to provide 
                        edge preps and weld gaps that meet the design specifications for flux cored weld, and now this is a yard in which the management wants to to bring a laser into their yard. 
 
 IN MY WORLD,  ANY SHIP YARD WOULD BE  RUN LIKE A NAVY SHIP:
 
 Ship 
                              yard management would do well to compare themselves with the way the navy runs a ship 
                              and submarine. A captain or engineer on these vessels typically  has the ability to operate or take apart most things on the ship. I 
                                am not suggesting that today that this comprehensive, technical expertise 
                                should be part of this generation's 
                                manufacturing managers  job description, (it should however be part of an engineers job description). I am suggesting that in 2012 
                                the global weld industry would benefit from a compromise in which managers and 
                                engineers have less reliance on salesmen or weld equipment rep and show more ownership interest in 
                                the equipment responsible for building their products.
 
 To 
                                      get manufacturing management and engineers back into the weld equipment process control 
                                      loop, an important first step would be for these individuals to show the workers 
                                      that when they open their mouths on the subject of welding, they can provide welders 
                                      on the shop floor something most don't have "weld process control knowledge".
 
 If you are looking 
                                        for excellent MIG and flux cored weld process control knowledge resource, it's  here.
 
2001: SMAW AND MORE ON LACK OF EVOLUTION: The 
                      evolution from the shielded metal arc welding (stick) process, to the gas shielded 
                      flux cored welding process has for many pressure vessel shops, pipe shops 
                      and pipe line contractors been painful and slow. The flux cored wires that 
                      offered many practical benefits for all position welds were developed > twenty   five ago. 
                    The weld reality for those industries that weld pipe lines or and code  projects     with the SMAW process, is the gas shielded flux cored weld process evolution for most all position code application should have taken a few weeks.  Note: When the management and engineers don't provide weld process ownership, the so called weld decision makers  will leave it to their welders to test new weld wires or gas mixes. 
 Some of the greatest resistance to the uses of flux cored wires came from the global pressure vessel and pipe weld shops that provide code quality welds. These weld shops like ship yards were entrenched in SMAW (stick) weld practices, and the unqualified flux cored sales reps who were selling the cored wires usually lacked the FCA weld process control - best weld practice expertise that was necessary to optimize the flux cored weld performance and therefore could not  convince 
                      the stick pipe welders to accept the superior flux 
                      cored process.  This in 2019 is an issue with introducing the worlds best weld process for pipe welds, its called TIP TIG.
 
 As the majority of welders  lack the best practices and weld process control expertise necessary for  weld any weld consumable (or equip). evaluation, therefore the new consumable weld test results will often be poor. 
                      Also what motivation will  welders have for going outside their daily comfort zones and recommending something new that would require major learning curve changes for both the weld shop and front office?
                     OF COURSE MANAGENT 
                      WOULD BE HAPPY WITH A PROCESS THAT REQUIRES MINIMAL PROCESS CONTROL EXPERTISE: As the SMAW equipment provides 
                      a single weld current control, the  
                      STICK welder simply increases or decreases the weld current and therefore needs minimal weld process control expertise. In most instances even the choice 
                      of the electrode is made for the welder. In contrast to the SMAW process, 
                        the MIG equipment that's also used for flux cored welding allows a welder to use 
                        seven distinct modes of weld transfer for MIG - FCA welds..
 The reality today in 2012 is that most of the  weld shops that use the common MIG and flux cored processes  will have focus on the welder's skills rather than on the 
                      welder's weld process control expertise. Every day in these weld shops you will find that the MIG equipment and consumables are  rarely used to provide their full weld quality - productivity potential and therefore every day weld  costs are more than they need to be. The upside is in most weld shops there is always good potential for dramatic weld cost savings. WELDERS WILL NOT FEEL COMFORTABLE WITH WIRE FEED PROCESSES UNTIL SOME INDIVIDUAL  IN THE COMPANY STEPS UP TO THE PLATE AND TEACHES THEM THE BEST PRACTICES AND PROCESS CONTROLS NECESSARY TO OPTIMIZE THESE TWO PROCESSES. PLEASE NOTE. YOU DO NOT NEED WELD EXPERTISE TO PRESENT MY UNIQUE WELD PROCESS  CONTROL TRAINING RESOURCES.     WELDING SUBMARINES AND SPACE SHIPS WITHOUT WELD PROCESS CONTROLS?
  
 
 
                
                  
                    History 
                      of USS Thresher (SSN-593)Related Resources:
    In 
                      company with Skylark (ASR-20), the USS Thresher put to sea on 10 April 1963 for 
                      deep-diving exercises. In addition to her 16 officers and 96 enlisted men, the 
                      submarine carried 17 civilian technicians to observe her performance during the 
                      deep-diving tests. Fifteen minutes after reaching her assigned test depth, the 
                      submarine communicated with Skylark by underwater telephone, appraising the submarine 
                      rescue ship of difficulties. Garbled transmissions indicated that--far below the 
                      surface--things were going wrong. Suddenly, listeners in Skylark heard a noise 
                      "like air rushing into an air tank"--then, silence. Efforts 
                      to reestablish contact with Thresher failed, and a search group was formed in 
                      an attempt to locate the submarine. Rescue ship Recovery (ASR-43) subsequently 
                      recovered bits of debris, including gloves and bits of internal insulation. Photographs 
                      taken by bathyscaph Trieste proved that the submarine had broken up, taking all 
                      hands on board to their deaths in 5,500 of water, some 220 miles east of Boston. 
                      Thresher was officially declared lost in April 1963. Subsequently, 
                      a Court of Inquiry was convened and, after studying pictures and other data, they said that the loss of Thresher was in all probability due to 
                        a casting, piping, or weld failures that flooded the engine room with 
                      water. This water probably caused electrical failures that automatically shutdown 
                      the nuclear reactor, causing an initial power loss and the eventual loss of the 
                      boat.   How lack of metallurgical expertise 
                    and 
                    cold water helped destroy the Titanic.
  
     
                
                  
                     Goverment weld - bld rework costs is often extraordinary. 
 According 
                          to the program office the LPD 17 Amphibious Transport Dock, which was delivered 
                          to the Navy in July 2005, experienced numerous quality problems 
                    of varying degrees that significantly impacted the ships mission. These problems contributed to a delay of 3 years in the delivery of the ship and a cost increase of $846 million.
 In June 2007, 
                        the Secretary of the Navy sent a letter to the Chairman of the Board of Northrop 
                        Grumman expressing his concerns for the contractors ability to construct 
                        and deliver ships that conform to the quality standards maintained by the Navy 
                        and that adhere to the cost and schedule commitments agreed upon. Northrop Grummans 
                        Chairman acknowledged that the company was aware of the problems and is working 
                        on improving its processes. The 
                      LPD 17 encountered a problem with the isolators on titanium piping. The isolators 
                      are used to separate different types of metals to keep them from corroding. The 
                      problem was discovered in 2006, about a year after the launch of the first ship. 
                      According to DOD program officials, the titanium piping is used throughout the 
                      ship because it is lighter than the traditional copper-nickel piping and has a 
                      longer service life. However, it has not been used much in naval surface ships 
                      or by the American shipbuilding industry, and therefore required new manufacturing 
                      and installation processes. According to the program office, these processes were 
                      being developed as Northrop Grumman Ship Systems was building the ship. In addition, 
                      designs for the piping hangers, which hold the piping in place, as well as tests 
                      of the isolators were subsequently delayed. When the titanium piping on the ship 
                      was changed, the hanger design had to be modified as well. The final hanger design 
                      was not completed until about 90 percent of the titanium piping was already on 
                      the ship, which resulted in additional rework and schedule delays. (Note 
                      from Em. Welding Titanium would have been a much easier task with  TIP TIG, which was available at this time.
                       The 
                      ship alsp encountered problems with faulty welds on P-1 piping 
                        systems, a designation used in high-temperature, high-pressure, and other 
                      critical systems. This class of piping is used primarily in hydraulic applications 
                      in engineering and machinery spaces. P-1 piping systems require more extensive 
                      weld documentation than other pipes as they are part of critical systems and could 
                      cause significant damage to the ship and crew if they failed. Welds of this nature 
                      must be documented to ensure they were completed by qualified personnel and inspected 
                      for structural integrity. Further investigation revealed that weld inspection 
                      documentation was incomplete. As a result, increased rework levels were necessary 
                      to correct deficiencies and to re-inspect all the welds. Failure to complete this 
                      work would have increased the risk of weld failure and potentially presented a 
                      hazard to the ship and crew. According to the program office, a contributing factor 
                      was turnover in production personnel and their lack of knowledge on how to complete 
                      the proper documentation. Note from Ed. If people 
                      are not doing their job, not qualified to do the job, it's time to hire qualified managers, engineers and supervisors who can rectify these situations and provide traimnig for their employees.
 
                      
 
 
                        
                       THIS NEXT ARTICLE INDICATES. WHY EVERY WELD SHOULD BE CONSIDERED A  CRITICAL  
                                      WELD: 
    
                    Authors KITUNAI, Yoshio 
                      (Japan Crane Association)KOBAYASHI, Hideo (Yokohama National University)
 
 On 
                        March 27th, 1980, the semi-submersible platform Alexander 
                          Kielland suddenly capsized during a storm in the North Sea, because one of its 
                          five vertical columns supporting the platform was broken off. 123 
                            workers among the 212 people on board were killed in the accident.
 
 The 
                          investigation showed that a fatigue crack had propagated 
                            from the double fillet weld near the 
                        hydrophone mounted to the tubular bracing D6. As a result, the five other tubular 
                        bracings connecting to the vertical column D broke off due to overload, and the 
                        column D became separated from the platform. Consequently, the platform became 
                        unbalanced and capsized. After the accident, the offshore design rules were revised 
                        and some countermeasures were added to maintain a reserve of buoyancy and stability 
                        for a platform under a storm.
 
 
  Cause (1) Fracture features A 
                            circular hole was introduced to the underside of the D6 bracing, and a pipe, which 
                            is called a hydrophone, was mounted into the circular hole by welding. The hydrophone 
                            was 325 mm in diameter with a 26 mm wall thickness. The hydrophone was welded 
                              using a double fillet weld with a weld throat thickness of 6 mm. A drain of the 
                            bracing D6 had to be installed at a location 270 mm away from the hydrophone.
 
 As 
                            a result of examination of the welds of the D6 bracing, some cracks related to 
                            lamellar tearing were found in the heat affected zone (HAZ) of the weld around 
                            the hydrophone. Traces of paint coinciding with the paint used on the platform 
                            were recognized on the fracture surface of the fillet weld around the hydrophone 
                            in the bracing D6.
 
 The paint traces show that the cracks 
                              were already formed before the D6 bracing was painted. Examination of the 
                            fracture surface also showed that the fatigue cracks propagated from two initiation 
                            sites near the fillet weld of the hydrophone to the direction circumferential 
                            to the D6 bracing. Moreover, the fatigue fracture surface occupied more than 60% 
                            of the circumference of the D6 bracing (Fig. 7), and beach marks were formed on 
                            the fracture surface, which was about 60 to 100 mm away from the hydrophone. Striations 
                            with spacing of 0.25E-3 to 1.0 E-3 mm were observed in patches on the fracture 
                            surface of the D6 bracing.
 
 (2) Characteristics of the welds of the hydrophone. Considering 
                            of the importance of the strength of the D6 bracing, welding of the drain into 
                            the bracing was carried out carefully according to the design rules. In the case 
                            of the installation of the hydrophone, however, a circular hole was made on the 
                            D6 bracing by gas cutting, and the surface of the hole was 
                              not treated by some process, such as a grinding. After cutting, a pipe, 
                            which was made by cold bending and welding using a plate with 20 mm thickness, 
                            was mounted into the hole of the bracing, and the pipe was attached by welded 
                            around the hole by double fillet welding with a throat thickness of 6 mm.
 
 When 
                                the hydrophone was installed by welding, the weld defects, such as incomplete penetration, 
                                slag inclusion, and root cracks, were introduced in the welds, because of the 
                                poor gas cutting and welding practices. Moreover, lamellar 
                                  tearing related to inclusions in the material used was found near the HAZ of the 
                                  hydrophone. The stress concentration factor, Kt, of the fillet weld of the hydrophone 
                                  was in the range of 2.5 to 3.0, which is higher than the average value of Kt of 
                                  1.6 for a fillet weld performed under normal conditions.
 
 (3) 
                        Chemical composition and mechanical properties of materials
 The chemical composition 
                        of the materials was found to be within the specified limits. A comparison of 
                        the mechanical properties between the specification and the test results for the 
                        fractured materials is shown in Table 2. The yield strength of the D6 bracing 
                        in the longitudinal direction is slightly lower than the specified minimum values. In case of the hydrophone, the 
                          Charpy impact energy is lower than the required value of 39 J at -40 C. Moreover, 
                            the reduction of area of the hydrophone for the through-thickness direction is 
                            markedly reduced because of the large amount of weld inclusions.
 
 
 (1) Although the D6 bracing was 
                              one of primary components of the platform, little attention was given to the installation 
                              of the hydrophone into the bracing. Hence, a crack with 
                                a length of about 70 mm was introduced in the fillet weld around the hydrophone, 
                                before the D6 bracing was painted.
 
 (2) Fatigue cracks propagated 
                              from two initiation sites near the fillet weld of the hydrophone in the direction 
                              circumferential to the D6 bracing at the early stage of the life of the platform.
 
 (3) 
                              The five other bracings connected to the column D broke off due to overload, and 
                              the column D was separated from the platform. Consequently, the platform became 
                              unbalanced and capsized
 
 (4) Inspection of the D6 bracing had not been carried 
                              out.
 
 
 This is a partial report found on the web and it enpahasizes that all welds should be considered critical.
 
 All http//weldreality.com weld programs
 
   |