Weldreality
Home Page.
TIP TIG Welding
Home Page
TIG Welding
All Weld and Steels Programs
Ed's Process Control Training Materials
MIG Welding
Steels   > 4mm
MIG Welding
Steels < 4mm
Pulsed MIG Welding
MIG Welding Gases
MIG Welders And Equipment
Robots & Weld Management
Robots and MIG
Welding Tips
TIG Welding Tips
MIG / Flux Cored
Pipe Welding
Welding Advice
Welding Forum
Ed's Bio / Contact
Ed's Weld Projects

Welding Books

MIG Welding Book, Management
A Management & Engineers Guide to MIG Weld Quality, Productivity and Costs

Gas Metal Arc Welding Book
Manual and Robotic (MIG) Gas Metal Arc Welding Book

MIG and Flux Core Welding Book
Flux Cored and MIG weld process controls

Manual MIG Welding Book
Manual MIG Welding Process Control

(Also in Spanish)
" Proceso de Soldadur MIG Manual "

Welding CD's

Robot Welding CD
Robot MIG welding. Best Weld Practices and Process Controls

MIG Welding CD
Manual MIG Welding. Best Weld Practices and Process Controls

Flux Core Welding CD
Flux Cored Best Weld Practices and Process Controls

MIG Welding Process Controls
DVD Film "MIG Process Controls Made Simple"

Order these MIG Welding or Flux Cored Training Materials Now




     
 
ED CRAIG. www.weldreality.com.

The world's largest website on MIG - Flux Cored - TIG Welding


ASTM & API Steels. Tubes & Pipe weld data

Advanced TIP TIG Welding
TIP TIG Welding is always better quality than TIG and 100 to 500% faster with superior quality than TIG - MIG - FCAW.

 
 
   



Written by Ed Craig:
Home page of www.weldreality.com.



PIPE / TUBES..ASTM - API Carbon & Low Alloy Steels.
Also a look at the effectiveness of codes and weld procesess.

PIPE Welding Steels and TIG - MIG and Flux Cored Welds.



Every pipe weld application has unique requirements guided by different codes and specifications. The following pipe weld guide is intended as a quick reference to assist with logical welding decisions. The information provided, is certainly incomplete and implies no guarantees.

All pipe and pressure vessel recommendations should be verified by the applicable codes, especially when heat treatment, low hydrogen and low alloy electrodes are required. No pipe weld should be carried out unless that weld is first qualified. If the weld is required to match the properties of the pipe ensure the alloy content of the electrode is matched and verify the preheat or post heat recommendations.

With the introduction of TIP TIG into the USA, pipe shops now have a single, easy to use process that will produce superior weld results than regular TIG, flux cored or any MIG weld trasfer mode.


When welding low and medium carbon steels, the 70XX stick electrodes, E70S-3-6 MIG wires and E7XT-X flux cored electrodes can be used.

When welding low alloy 1.25% Cr - 0.5 Mo or 2.25 Cr - 1% Mo steels with up to 0.05% max carbon, typically 8018-B2L / 9018-B3L (L = low carbon) can be used.

When welding higher strength alloys or when tempering and quenching are required to attain the higher strengths, the higher carbon 8018 B2 and 9018 B3 electrodes are utilized.


API Carbon Steel Pressure Pipe.



  • The preheat temperatures provided are when low hydrogen electrodes are used. Consider all the TiP TiG, MIG and gas shielded flux cored electrodes as low hydrogen consumables.

  • Preheat also applies to minimum inter-pass temperatures.

  • Post heat increases toughness and reduces residual stresses.

  • For critical pipe applications always adhere to to code and material specifications and weld requirements. Double check the electrode recommendations.

  • 1000 psi = ksi x 6.894 = MPa.

  • API 1104 is Standard for welding pipe lines.






For more pipe welding data follow this link

 

   Steels Yield
 ksi
Tensile
 ksi
Description
API 5A F25 25 40casing drill 
API 5A H40 40 60 
API 5A J55 55 75 
API 5A  N80 80 100 
API 5A P105105  120 
API 5A P110 110 125 
API 5A D 55 95 
API 5A E  75 100 



COMMON PIPE ELECTRODES


E6010 Minimum Yield 50,000 psi Minimum Tensile 62,000 psi.
E6011 Minimum Yield 50,000 psi Minimum Tensile 62,000 psi.
E7010 Minimum Yield 60,000 psi Minimum Tensile 72,000 psi.
E7018 Minimum Yield 60,000 psi Minimum Tensile 72,000 psi.



API 5 L. Line Pipe Specification

API 5LX 5L = Line Pipe

API 5LX X = High Test Line Pipe.






E70S-3 and E70X6 MIG Wires.
Minimum Yield 60,000 psi, Minimum Tensile 72,000 psi




Ed providing MIG and FCAW process control training
to Imperial oil pipe welders on 16 inch nat gas pipe


   Steels Yield
 ksi
Tensile
 ksi
MPa
 PREHEAT chemistryweld electrode
API  5L X65 >65 >25 mm
 200F if 
E60XX used
 E60XX
API 5L A25
C1.1-C1.2
 >25 >45
>310
>25 mm
 200F if 
E60XX used
carb
0.21
Mn0.3/0.6
 
API 5L A >30
 206
 >48
 330
E60XX used
>12mm 100F >25mm 200F
carb
0.21/0.22
Mn0.9
 
API 5L B >35
 242 
 >60
 413
E60XX used
<12mm 100F
>12mm 200F
carb
0.26/0.27
Mn1.15
E60XX
API 5L X42  >42 >60
  413
If carb <0.25 with E60XX 
>12mm 100F
>25mm 200F

If carb >0.25 with E60XX PREHEAT<12 MM 100f >12mm 200F if low hyd used <12 mm 50F >12mm 150F
carb
0.29
Mn1.25
E60XX
E70XX
E71T-1
API 5L X46 >46
  317
 >63
  434
E60XX preheat
>12mm 100F
>25mm 200F
if low hyd used <12 mm 50F >12mm 150F
carb
0.2-0.31
1.25/1.35Mn
E60XX
E70XX
E71T-1
API 5L X52 >52
 358 
66 - 72
E60XX preheat
>12mm 100F
>25mm 200F
if low hyd used <12 mm 50F >12mm 150F
carb
<0.31
Mn1.35
E60XX
E70XX
E71T-1
API 5L X56 >50
  344
71- 75
 517
preheat E60XX
carb <0.21
<12mm 100F
>12mm 150F
preheat
carb >0.21
<12mm 100F
>12mm 200F
low hyd used carbon >0.21 <12mm 50F >12mm 150F
carb
<0.26
Mn1.35
Cb 0.005
V0.02
Ti 0.03
E60XX
E70XX
E71T-1
API 5L X60 >6075 - 78
 537
PREHEAT
SAME AS
X56
carb
<0.26
Mn1.35
Cb 0.005
V0.02
Ti 0.03
E60XX
E70XX
E71T-1
API 5L X65 >6577 - 80 PREHEAT
SAME AS
X56
carb
<0.26
Mn1.4
Cb 0.005
V0.02
Ti 0.03
E60XX
E70XX
E71T-1
API 5L X70 >70 >82
567
PREHEAT CARB <0.2
<12mm
 50F
>12mm 100F
PREHEAT CARB >0.2
<12mm
  50F
>12mm 200F
carb
<0.23
Mn1.6
Cb 0.005
V0.02
Ti 0.03
E7018
E71T-1
API 5L X80 >8090 - 120<12mm 50F
>12mm 150F
 E7018
E71T-1




WELD CODES, EFFECTIVENESS AND INADEQUATE INFOMATION.

When it comes to MIG and flux cored welding, rather than providing weld process resolutions, most codes relevant to pipe welding will provide inadequate information or the information they provide simply adds to the global weld process myths and confusion.


Welding decision makers often look codes such as AWS - API and - ASME to provide practical, pipe welding advice and recommendations. Those individuals that that put all their faith in the codes that are governing the specific weld applications they are working on, need to be aware of a little weld reality, The weld information in these codes has too frequently been written and influenced by code committee individuals who lacked MIG / Flux Cored weld process controls & best practices / application expertise.


50 YEARS AFTER THE INTRODUCTION OF THE "MIG PROCESS",
AND 35 YEARS AFTER THE INTRODUCTION OF FLUX CORED ELECTRODES, THE PRIMARY WELD CODES WHEN ADVISING ON THESE PROCESSES STILL CREATE CONFUSION AND TOO MANY QUESTIONS.

API. 5.2.3 Pulsed Gas Metal Arc Welding (GMAW-P. This code states that the pulsed process may be used for any material thickness and whenever the welding system is changed or the settings on existing equipment are "significantly altered" then the fabricator should verify the weld properties. The extent of verification or testing should be as agreed between the purchaser and fabricator.

In a world in which engineering standards should apply, what the hell does significantly altered mean. In contrast to the traditionaL, two control, MIG or flux cored weld process, there are many weld essential variables that can be readily changed when utilizing the pulsed MIG mode. While the API code warns against a "SIGNIFICANT CHANGE" in a pulsed settings", the real world weld decision maker needs to be aware that an insignificant, small parameter change with the highly sensitive, manual pulsed MIG mode, can have a significant influence on the weld fusion attained.



 

While the code bodies in 2013 have very little negative to say about pulsed MIG process, for those of you with grey hair, you may remember that these same codes typically either did not allow regular MIG or the code weld specifications made incorrect recommendations or negative comments on the use of MIG. For example, for five decades, the MIG short circuit process has been treated like a leper, yet the weld reality was and still is in 2013, the Short Circuit mode is the best weld transfer mode for carbon steel, "rotated" pipe, open root welds.

Most of the pipe shops which were embedded with the SMAW and TIG process would typically not consider using the MIG spray transfer mode for rotated pipe welds, yet the reality has been that MIG spray transfer on the rotated pipe applications should provide superior weld fusion and less porosity than any pulsed MIG transfer.

2103: GLOBAL CODES PROVIDE NO INFORMATION ON THE POOR
PULSED MIG WELD MASS TO WELD ENERGY RATIO:

What most weld decision makers and QA personnel are not aware, is that there is on most all position, pulsed MIG pipe weld applications thicker than 6mm, a poor ratio between the moderate pulsed MIG weld energy attained, (influenced by peak to low back ground current changes) and the high weld deposition rates that typically result. The healthy pulsed MIG weld deposition rates push the high weld speeds, (faster weld speeds don't help weld fusion) along with the resulting large weld mass (larger weld mass creates a hinderance to the weld energy produced).

For those of you moving aggressively forward with the manual pulsed MIG process for your all position pipe welds, do not be surprised even when using the highest manual welder skills, when you X-Ray those sluggish stainless or nickel alloys to find lack of fusion.


YOUR LOCAL SALES REP WONT TELL YOU THIS BECAUSE THEY ARE NOT AWARE OF IT. OPTIMUM PULSED MIG WELD FUSION WITH MANUAL WELDS WILL OFTEN BE CONSIDERED MARGINAL, AND MARGINAL WELD FUSION WILL BE MADE WORSE BY THE MANY PROCESS AND HUMAN VARIABLES THAT INFLUENCE THOSE MANUAL PULSED MIG WELDS.




THE CODE RULES SHOULD CHANGE WITH AUTOMATED PULSED MIG WELDS:



I am not aware of any code that discusses the mechanized versus manual pulsed welding differences and the weld quality consequences of those differences. When a code body puts it's stamp of approval on a weld process such as Pulsed MIG, the code is sending the message that this is process that's acceptable for both manual and mechanized pipe welds.

With automated pulsed MIG pipe line welds in which the use of multi-MIG guns is typical, electronic MIG power source features such as volt or current energy spikes can be applied to the weld weave dwell times. These controlled, increased weld energy spikes will improve the 5G pipe side wall weld fusion. Also the controlled pulsed MIG weld speed, the controlled, mechanized weld weaves and the constant wire stick out. are the automated features that will have a lot to do with success of the mechanized pulsed MIG process when used for pipe line welds. Take away these important controls and as it's been for three plus decades the manual pulsed MIG process has proven that the attainment of 100% X-Ray all position pipe weld quality is a challenge. By the way this is a challenge that weld shops in 2013 do not have to face when they can use the far superior TiP TiG manual or automated weld process
.



API. 5.2.2 Short Circuiting Gas Metal Arc Welding (GMAW-S). The use of GMAW-S shall be limited to the following conditions:

[] For vertical welding, the root pass and second pass progression for a material of any thickness may be either uphill or downhill.

Ed's response. There is no logic in using MIG short circuit, with the vertical up position on any weld application. Just as there is no logic in this cold process being used for the second pass which from a weld fusion potential is the most sensitive part of any pipe weld..


[]
The fill and cap pass for butt or fillet welds may be welded with the short circuit process, provided the thickness of any member does not exceed 3/8 in. (9.5 mm) and vertical welding is performed with uphill progression.

Ed's response. Watch out for lack of weld fusion with the short circuit process welding vert up on any steel parts > 1/8 (> 3 mm0..





Ed testing both the short circuit and STT process
at the difficult 5 to 7 o'clock position


MIG short circuit welding vertical down, while fine for a rotated pipe, open root welds, this process when utilized in the fixed 5G position can cause root problems between 5 to 7 o'clock over head positions. In this location, unmelted wire will occasionally sticks through the open root gap and root weld suck backs may occur.


In 2001, when I wrote this, the most widely used codes made no mention of the use of Spray Transfer, Globular Transfer, STT or metal cored wires, does that mean they can or cannot be used. or does it mean that the people who write the code weld data have nothing to say on the processes that weld the pipes in the industries the codes are utilized?

 

The weld process considerations and confusion
that now surrounds pipe welding.


QUESTION.
2001: Ed when welding pipes we could use SMAW electrodes, flux cored or metal cored electrodes. We use MIG short circuit, globular, spray, pulsed transfer. We also utilize GTAW the Lincoln STT MIG process and sometimes SAW. As much of the welding process information we get is sales driven and the codes are no help, can you shed some light on the subject of logical weld process and electrode selection for code quality welds?


ANSWER.
Obviously with the many process - consumable choices. many factors have to be considered before selecting a weld process or electrode for pipe welding. When it comes to pipe welding the first question that should be addressed is which weld process is the best process for welding pipes. I could readily write a book on this subject or I can simply say this. Visit www.tiptigusa.com and see a pipe weld quality and productivity never attained with with any of the conventional weld processes used throughout the global pipe welding industry...




SMAW GENERAL PIPE DATA CARBON STLS:

Best process for any pipe open root or fill pass is always TiP TiG.

If you have to use SMAW, the following is a little relevant root data.

Typical Vert Down Root Electrodes, E6010 or E7010 DC+.

Consider E6010 or E7010 DC- if weld burn through or hollow bead occurs.

Typical Vert Down Filler electrode, E7010 DC+. For vert up filler passes E7018.

Use E6010 or E7010 on pipe to API 5LX65.

Over 65 yields, use low hydrogen electrodes.

Minimum preheat if pipe less than 40F use 100F to take away possible moisture.

When preheat used ensure that's also the minimum inter-pass temp.

 






Ed testing processes - consumables on Nat Gas pipe welds.



What is Yield strength?.
The stress that can be applied to a base metal or weld without permanent deformation of the metal.

What is Tensile strength?. The ulltimate tensile strength, is the maximum tensile strength that the metal or weld can with stand before failure occurs.

What is lamellar tearing?. When welding, the weld shrinkage stresses impose tensile strains in the steel plate or on inclusions paralleled to the plate surface. The tensile strains can separate the inclusions causing cracks. Excessive strains can further elongate the cracks. Carbon, manganese and low alloy steels made at the mill with inadequate deoxidization are sensitive to lamellar tearing. The potential for lamellar tearing increases with the amount of inclusions in the plates being welded. Of special concern is when the inclusions are parallel to the plate surface. More data in ASTM A770 / A770M Standard Spec for through thickness tension testing of steel plates.

 


For electrode selection examine the compatibility of the base metal's yield - tensile strengths, and the metal's primary alloy content. The desired weld preheat will be greatly influenced in the weld procedure used and in the amount of weld applied. Post heat and interpass temp control is typically applied to low alloy steels when applications are subject to high and low temperatures or high pipe pressures.






Mechanical Strength of Gas Shielded Flux Cored Electrodes from the ANSI / AWS A5.29. 1198 Specifications for Low Alloy Steel Electrodes for Flux Cored Arc Welding.

AWS ClassificationTensile 
ksi
Tensile MPaYield 
ksi
Yield
Mpa

E6XTX-X-XM

60 - 80410 - 55050340

E7XTX-X-XM

70 - 90480 - 62058400

E8XTX-X-XM

80 - 100550 - 69068470

E9XTX-X-XM

90 - 110620 - 76078540

E10XTX-K9-K9M

SEE SPEC 88610

M = an argon mix with 75 to 80 argon balance CO2

All DCEP E71T-1
Second number 
1 = all position 
E70T-1
Second number 
0 = flat and horizontal
 

 

What is Hardness? The resistance of a metal or of a weld to penetration. Hardness is related to the strength of the metal. A good way to test a weld after the weld and heat treatment are complete. is to test the hardness of weld and the base metal HAZ surrounding the weld.

What is Ductility? The amount that a metal or weld will deform without breaking. Measured on welds by the % of elongation in 2 inch 51 mm test piece. An E71T-1 flux cored electrode should result in a minimum of 20% elongation. An E70S--6 MIG weld should produce 22%.

 

What is weld Porosity? Weld porosity, a cavity discontinuity that forms from a weld gas reaction. The weld porosity can be trapped inside the weld or at the weld surface. The porosity is typically round in shape but can also be elongated or any shape.


CLUSTER WELD POROSITY. A localized group of pores with random distribution.
Causes. Arc blow, gas flow inconsistency, intermittent material or wire contamination, poor weld parameters or technique.

PIPING WELD POROSITY. The pore length is longer than it's width. Often in fillet welds the pore is seen working its way from the root towards the weld surface. Typical porosity when using argon oxygen mixes on parts >6 mm. Increase weld energy, slow weld speed avoid weaves.

ALIGNED WELD POROSITY. Linear porosity, an array of round pores in a line. Typically caused from contamination in the metal or electrode. Add energy use arc to break up surface ahead of weld.

ELONGATED WELD POROSITY ( wagon tracks). Typically found parallel to weld axis. Classic porosity when moisture is evident in gas shielded flux cored wires. Increasing the flux cored wire stick out and increasing the wire feed rate will help. Baking flux cored wires and storing wires in a dry environment also reduces potential. For MIG welding slow weld speeds, make welds larger, avoid weaves, add energy to decrease weld cooling rate.

SCATTERED WELD POROSITY. Porosity scattered randomly throughout the weld. If the weld surface is gray and looks oxidized it's typically insufficient gas flow. If the weld surface looks as clean as normal the scattered porosity is usually caused by part or electrode contamination, or weld data that causes the weld to freeze too rapidly

LARGE PORE WELD POROSITY. If weld surface is clean and does not look oxidized, the large pore MIG / FCAW porosity is usually a result of excessive gas flow, gas turbulence with gas flow greater than 40 cuft/hr. If weld surface dirty the cause is often a result of insufficient gas less than 20 cuft /hr.

 

PRE HEAT ALSO MEANS MINIMUM INTER-PASS TEMPERATURE

   Steels Yield
 ksi
 MPa
Tensile
 ksi
 MPa
Description PREHEAT  UNS#weld Chemistry
Electrode
ASTM
A53 
Types E-S Grade A
  Black and hot dipped galvanized pipe Grade A
K02504
 
A53 
Types E-S Grade B
    Grade B
K03005
 
A53 
Type E 
Grade A
Grade 
A-B
>30
206
Grade 
A-B
>48
331
 Pre heat
not  Req
 
Carbon 0.25
Mn 0.95
E60XX
E70XX
E70S-6
E71T-1
A53 
Type E
Grade B 
Grade 
A-B
>30
206
Grade 
A-B
>48
331
 preheat
>25mm
100F
 carb 0.30
Mn 1.2
E60XX
E70XX
E70S-6
E71T-1
A53 
Type S
Grade A 
>35
 241
>60
 413
 Pre heat
not  Req
 carb 0.25
Mn 0.95
E60XX
E70XX
E70S-6
E71T-1
A53 
Type S
Grade B
>35
 241
>60
 413
 preheat
>25mm 100F
 carb 0.3
Mn 1.2
E60XX
E70XX
E70S-6
E71T-1
ASTM
A105
     Weld same as A53
ASTM
A106-A
>30
 206
>48
330
Seamless Carbon High Temp Service KO2501Carb 0.25
Mn 0.93
E7018
E70S-6
E7XT-X
A106-B>35
 241
>60
 413
 preheat
>25mm 100f
K03006Carb
0.3
Mn 1.06
Si 0.1min
E7018
E70S-6
E7XT-X
A106-C>40
 275
>70
 482
 preheat
12-25mm
100F >25 mm 200F
K03501Carb
0.3
Mn 1.06
Si 0.1min
E7018
E70S-6
E7XT-X
A106   Over 0.25 Carbon 
Post heat 1200F
 E7018
E70S-6
E7XT-X
ASTM
A120
Similar
to A53
 Steel Black Pipe, HOT Dipped or galvanized  Not specified
If galvan
use E70S-3
ASTM
A134
Conforms with A285 Steel Pipe arc welded over 40 cm  E7018
E70S-6
E7XT-X
ASTM
A135-A
>30
 206
>48
 330
Steel Pipe Resistance
Welded
  
Carbon
0.25
Mn 0.95
E60XX
E7018
E70S-6
E7XT-X
A135-B>35
241
>60
413
   Carbon
0.3
Mn 1.2
E60XX
E7018
E70S-6
E7XT-X
ASTM
A139-B
>35
 241
>60
 413
Steel Pipe
arc welded
>100mm
 KO3003carbon
0.3
Mn 1.0

E60XX
E7018
E70S-6
E7XT-X
A139-C>42
289
>60
413
  K03004carbon
0.3
Mn 1.2

E60XX
E7018
E70S-6
E7XT-X
A139-D>46
317
>60
413
 preheat
>12mm 100F
K03010carbon
0.3
Mn 1.3
E60XX
E7018
E70S-6
E7XT-X
A139-E>52
358
>66
455
 preheat
>12mm 100F
K03012carbon
0.3
Mn 1.4

E60XX
E7018
E70S-6
E7XT-X
A139-A>30
206
>48
330
  no specE60XX
E7018
E70S-6
E7XT-X
ASTM
A155
  High temp pipe  E60XX
E70XX
E70S-6
E71T-1
ASTM
A161
>26
179
>47
324
Steel Tubes
Refinery Service
 K01504carbon
0.1/0.2
Mn 0.3/0.8
Si 0.25max
E7018
E70S-6
E7XT-X
A161-T1>30
206
>55
379
 preheat
25/50mm 100F
50/100mm 200F
Post Heat required  1200F
K11522carbon
0.1/0.2
Mn 0.3/0.8
Si 0.1/0.5 Mo0.44/0.65
E7010-A1
E7018-A1
E8XT-X
ASTM
A178-A
NOT SPEC Carbon Steel Boiler Tubes
12 to 125mm
 K01200carbon 
0.06/0.18
Mn 0.27/0.63
E7018
E70S-6
E7XT-X
A178-C>37>60
413
  K03503carbon 
0.35
Mn 0.8
E60XX
E70XX
E70S-6
E7XT-X
ASTM
A179
no spec Heat Exchanger
Condenser Tubes 3 - 75 mm OD
 K01200carbon 
0.06/0.18
Mn 0.27/0.63
E60XX
E70XX
E70S-6
E7XT-X
ASTM
A192

no spec
approx
>26


>47
High Pressure Boiler Tubes 12 - 175 mm ODrefer to codedK01201carbon 
0.06/0.18
Mn 0.27/0.63
Si 0.25max
E7018
E70S-6
E7XT-X
ASTM
A199
  Alloy steel heat exchanger Tubes<12mm 200F
>12mm 350F
Post heat req 1300F
S50200 
ASTM
A199
T3b
>25
172

>60
413
 <12mm 200F
>12mm 350F
Post heat req 1300F
K21509carbon
0.15max
Mn 0.3/0.65
Si 0.5 max
Cr 1.65/2.35
Mo 0.44/0.6
E9018-B3
E9XT-1-B3
ASTM
A199
T4
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
K31509carbon
0.15max
Mn 0.3/0.6
Si 0.5/1
Cr 2.1/2.8
Mo 0.44/0.65
E9018-B3
flux cored
E9XT-1-B3
ASTM
A199
T5
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
K41545carbon
0.15max
Mn 0.3/0.6
Si 0.5
Cr 4/6
Mo 0.45/0.65
E9018-B3
flux cored
E9XT-1-B3
ASTM
A199
T7
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
S50300carbon
0.15max
Mn 0.3/0.6
Si 0.5/1
Cr 6/.8
Mo 0.45/0.65
E8018-B2
flux cored
E8XT-1-B2
ASTM
A199
T9
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
S50400carbon
0.15max
Mn 0.3/0.6
Si 0.25/1
Cr 8/10
Mo 0.9/1.1
E8018-B2
flux cored
E8XT-1-B2
ASTM
A199
T11
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
K11597carbon
0.15max
Mn 0.3/0.6
Si 0.5/1
Cr 1/1.5
Mo 0.44/0.65
E8018-B2
flux cored
E8XT-1-B2
ASTM
A199
T21
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
K31545carbon
0.15max
Mn 0.3/0.6
Si 0.5
Cr 2.65/3/5
Mo 0.8/1.06
E9018-B3
flux cored
E9XT-1-B3
ASTM
A199
T22
>25>60 <12mm 200F
>12mm 350F
Post heat req 1300F
K21590carbon
0.15max
Mn 0.3/0.6
Si 0.5
Cr 1.9/2.6
Mo 0.87/1.13
E9018-B3
flux cored
E9XT-1-B3

Back to Top


 

2010: Question about Flux Cored:
Ed we had the following lunch room discussion. In our pipe shop we recently started to use gas shielded flux cored consumables. We used to use SMAW and we now know that the FCAW will provide superior weld fusion and deposit at least four times as much as SMAW pipe electrodes. I found out that the flux cored wires we are using have been around for more than 25 years. Ed why did it take many in the the pipe / pressure vessel industry so long to accept the FCAW process?


My Answer could be this simple by using one of the most popular sentances found in a pipe weld shop. "Why change the way we have always done it"

The bottom line is If a company management does not have personell with weld process expertise, then this company does not have the resources or confidence necessary to implement a major weld process change.

The bottom line, for decades most of the oil and pipe companies, power companies, chemical plants and pressure vessel shops lacked qualified weld management and engineers that could lead the weld shops when process change was beneficial. So it's understandable that if you walked into a pipe shop in 1960 and then walked into a pipe shop 50 years later in 2010, that when it came to welding pipes little had changed..

As we are all aware, many SMAW and GTAW pipe welders are often die-hard traditionalists who are proud of their manual skills and often less than enthusiastic to make a change to a process which requires process expertise and different best weld practices.

For example, the SMAW welders would try the flux cored wires, and not undersatnding the process requirements they would then play around with the data and MIG equipment controls. Without optimum settings the flux cored consumables would not perform the way they were designed to perform. The stick welders would be disgruntled with the FCAW process and resist the apathetic attempts by the inexperienced weld management to make the cost affective weld process changes.



   Steels Yield
 ksi
Tensile
 ksi
Description PREHEAT  UNS#weld Electrode

ASTM
A200

>25
 172
>60
 413
Alloy steel Tubes RefineryHeat treat and weld similar to A199S50200Weld similar 
to A199 ensure chrome Mo levels compatible

ASTM
A200 T3b

>25>60  K21509carbon
0.15
Mn 0.3/0.65
Si 0.5
Cr 1.65/2.35
Mo 0.44/0.65

ASTM
A200 T4

>25>60  K31509carbon
0.15
Mn 0.3/0.6
Si 0.5/1.0
Cr 2.15/2.8
Mo0.44/0.65

ASTM
A200 T5

>25>60  K41545carbon
0.15
Mn 0.3/0.6
Si 0.5
Cr 4/6
Mo0.45/0.65

ASTM
A200 T7

>25>60  S50300carbon
0.15
Mn 0.3/0.6
Si 0.5/1
Cr 6/8
Mo0.45/0.65

ASTM
A200 T9

>25>60  S50400carbon
0.15
Mn 0.3/0.6
Si 0.25/1
Cr 8/10
Mo0.9/1.1

ASTM
A200 T11

>25>60  K11597carbon
0.15
Mn 0.3/0.6
Si 0.5/1
Cr1/1.5
Mo0.44/0.65

E8018-B2

ASTM
A200 T21

>25>60  K31545carbon
0.15
Mn 0.3/0.6
Si 0.5
Cr2.65/3.35
Mo 0.8/1

ASTM
A200 T22

>25>60  K21590carbon
0.15
Mn 0.3/0.6
Si 0.5
Cr1.9/2.6
Mo 0.87/1.13

Back to Top

 

STRESS RELIEVING (SR). BASIC GUIDELINES:

STRESS RELIEF - CONTROLLED HEATING & COOLING TO REDUCE STRESS.

STRESS RELIEF MACHINED PARTS FOR DIMENSIONAL STABILITY.

STRESS RELIEF SLOW HEATING AND COOLING REQUIRED

CONFIRM WITH CODE SPECIFICAIONS FOR STRESS RELIEF REQUIREMENTS.





TYPICAL STRESS RELIEF SOAK TIME
ONE HOUR PER INCH OF THICKNESS

SR HEAT & COOL RATE PER HOUR 400oF 204oC DIVIDE THICKER PART

PARTS OF DIFFERENT THICKNESSES
SR MAX TEMP DIFFERENCE 75oF 24oC

STRESS RELIEF CARBON STEELS 1100oF 593oC
TO 1250oF 677oC

STRESS RELIEF CARBON 0.5% Mo
1100oF 593oC TO 1250oF 677oC

SR 1% CHROME 0.5% Mo
1150oF 621oC TO 1325oF 718oC

SR 1.25 % CHROME 0.5% Mo
1150oF 621oC TO 1325oF 718oC

SR 2% CHROME 0.5% Mo
1150oF 621oC TO 1325oF 718oC

SR 2.25 % CHROME 1% Mo
1200oF 649oC TO 1375oF 746oC

SR 5% CHROME 0.5% Mo
1200oF 649oC TO 1375oF 746oC

SR 7% CHROME 0.5% Mo
1300oF 704oC TO 1400oF 760oC

SR 9% CHROME 1% Mo
1300oF 704oC TO 1400oF 760oC

SR 12% CHROME 410 STEEL
1550oF 843oC TO 1600oF 871oC

SR 16% CHROME 430 STEEL
1400oF 760oC TO 1500oF 815oC

SR 9% NICKEL
1025oF 552oC TO 1085oF 585oC

FOR 300 SERIES STAINLESS SR WILL
RESULT IN CARBIDE PRECIPITATION

WITH LOW CARBON 300 SERIES
MAX SR 1050oF 566oC

SR 400 SERIES CLAD STAINLESS
1100oF 593oC TO 1350oF 732oC

SR CLAD MONEL INCONEL Cu NICKEL
1150oF 621oC TO 1200oF 649oC

STRESS RELIEF MAGNESIUM AZ31B 0
500oF 260oC 15 MIN

STRESS RELIEF MAGNESIUM AZ31B
H24 300oF 149oC 60 MIN

HK31A H24 550oF 288oC 30 MIN

HM21A T8-T81 700oF 371oC 30 MIN

 

MAGNESIUM WITH MORE THAN 1.5%
ALUMINUM STRESS RELIEF

MAGNESIUM CAST ALLOYS AM100A
500oF 260oC 60 MIN

AZ-63A 81A 91C & 92A
500oF 260oC 60 MIN

 

 

Should a weld professional in a a pipe / pressure vessel shop be able to tell you;

[a] the 0.045 (1.2mm) and 0.035 (1 mm) MIG wire feed position and weld voltage which is the starting point for spray transfer? These are good settings for rotated pipe fill passes.

[b] the 0.045 gas shielded E71T-1 optimum single wire feed setting and voltage for producing a 6 mm, vert up fillet weld on a plate. This is the same setting for welding anny steel pipe vertical up.

If an industry, in which many of it's educators, engineers and managers places little importance in weld process control training, why should we expect welders to focus on the weld process control or best practices details.

 

   Steels Yield
 ksi
 MPa
Tensile
 ksi
 MPa
Description PREHEAT  UNS#weld Electrode
chemistry

ASTM
A209 

  Carb Moly Boiler Super
Heater Tubes
Post Heat req 1150 to 1350F 

ASTM
A209 T1

>30
 206
>55
379
 preheat
>25mm
150F
K11522carb
0.1/0.2
Mn 0.3/0.8
Si 0.1/0.5
Mo0.44/0.65

E7018-A1
E8XT-1-A1
E80S-6

ASTM
A209 T1a

>32
 220
>60
 413
 preheat
12-25mm
150F
>25mm
250F
K12023carb
0.15/0.25
Mn 0.3/0.8
Si 0.1/0.5
Mo0.44/0.65

E7018-A1
E8XT-1-A1
E80S-6

ASTM
A209 T1b

>28
 193
>53
 365
 preheat
>25mm
150F
K11422carb
0.14max
Mn 0.3/0.8
Si 0.1/0.5
Mo0.44/0.65

E7018-A1
E8XT-1-A1
E80S-6



Why in the welding industry is it difficult to find anyone in management who knows the real cost of a MIG or flux cored weld?

The weld industry management weld cost focus is too often on something easy to understand like the cost of the weld wire or gas mix, rather than on the MIG or flux cored, semi-automatic weld deposition rates attained. When I first bought TiP TiG to North America and discussed with weld shop owners the weld deposition rate differences between TiP TiG and GTAW - FCAW and pulsed MIG, I would too often see the glaze look in the manager's or engineer's eyes. Thats the same look I see in my wifes eyes when i chat to her about welding

When an industry ignores or is not aware of the weld process / application weld deposition rate potential, it's understandable when the real cost of a weld is rarely understood.

 

   Steels Yield
 ksi
 MPa
Tensile
 ksi
 MPa
Description Preheat UNS# Weld
Electrode
Chemistry
ASTM
A210
  Medium Carbon Stl Boiler Super Heater 
Tubes 12mm 125mm OD
   
ASTM
A210 A-1
>37
 255
>60
 413
 Check ASME 
Code
K02707carb
0.27max
Mn 0.93
Si 0.1
Mo0.44/0.65

E70XX
E70S-6
E71T-1
ASTM
A210 C
>40
 275
>70
 482
  K03501carb
0.35max
Mn 0.29
Si 0.1
Mo0.44/0.65
E70XX
E70S-6
E71T-1
ASTM
A211
  Mild steel pipe  E60XX
E70XX
E70S-6
E71T-1






What shortage of skilled welders.

The manager states, "how will we ever replace this aging, highly skilled weld workforce"?

TIG - MIG and FCAW Weld Reality:
With all the issues that occur with welding, managers often perceive that the weld processes used in the weld shop must be complex, after all, these processes have been around for decades, yet the weld personel seem to have to play around with the weld controls whenever a new application comes into the weld shop.

THE PIPE SKILLED SHORTAGE WELD REALITY:

It's important to note that for code quality pipe welds, that the TIP TIG process eliminates at least 50% of the GTAW skills required for pipe welds. The majority of weld issues that occur daily in pipe weld shops are a result of an industry and educational system that for decades has placed minimal focus or importance on weld process controls and best weld practice expertise.

WHY THERE SHOULD BE LITTLE CONCERN FOR SKILLED PIPE WELDER SHORTAGES:
While community colleges take many months and sometimes years to train personnel to weld pipe, the following is the weld reality. When training a suitable individual who has never welded, it would take me no more than 5 days to train a TIP TIG welder to weld all position (5G) pipes, and the same 5 days to train that person to weld the pipes with either the MIG / flux cored process. Those trainess would then have the ability to pass any weld qualification test and meet any code requirements.




WELD PERSONNEL WHO ARE PROUD OF THEIR SKILLS SHOULD ALSO TAKE PRIDE IN THEIR WELD PROCESS KNOWLEDGE AND IN THEIR ABILITY TO CNROLL THE WELD PROCESSES AND CONSUMABLES THEY OPERATE.


Consider my CD process control training resources, they are a great training aid for guys who dont want to "play around" with their weld controls..

   Steels Yield
 ksi
 MPa
Tensile
 ksi
 MPa
Description PREHEAT  UNS#Weld Electrode
Chemistry
ASTM
A213 T2
>30>60Ferritic Austenitic Super heater TubesPreheat 300F
Post Heat  1200F
K11547carbon
0.2
Mn 0.61
Si 0.3
Cr 0.81
Mo 0.65 

E8018-B2
E8XT1-B2
ASTM
A213 T3-b
>30>60 Preheat <25mm 200F >25mm 250FK21509carbon
0.15max
Mn 0.65
Si 0.5
Cr2.35
Mo 0.65 

E9018-B3
E9XT-B3
ASTM
A213 T5
>25>60 Preheat <12mm 100F >12mm 600F
Post heat 1400F
K41545carbon
0.15max
Mn 0.6
Si 0.5
Cr4/6
Mo 0.65 

E502T-1
ASTM
A213 T5-b
>30>60 Preheat <12mm 100F >12mm 600F
Post heat 1400F
K51545carbon
0.15max
Mn 0.6
Si 1/2
Cr4/6
Mo 0.65 

E502T-1
ASTM
A213 T5c
>30>60 Preheat <12mm 100F >12mm 600F
Post heat 1400F
K41245carbon
0.12max
Mn 0.6
Si 0.5
Cr4/6
Mo 0.56 

E502T-1
ASTM
A213 T7
>30>60 Preheat <12mm 100F >12mm 600F
Post heat 1400F
K50300carbon
0.12max
Mn 0.6
Si 0.5/1
Cr6/8
Mo 0.56 
ASTM
A213 T9
>30>60 Preheat <12mm 100F >12mm 600F
Post heat 1400F
k50400carbon
0.15max
Mn 0.6
Si 1.0
Cr 8/10
Mo 1.1 

E502T-1
ASTM
A213 T11
>30>60 Preheat <12mm 100F >12mm 250F
Post heat 1200F
k11597carbon
0.15max
Mn 0.6
Si 1.0
Cr1/1.5
Mo 0.65 

E8018-B2
E8XT1-B2
ASTM
A213 T12
>30>60 Preheat <12mm 100F >12mm 250F
Post heat 1200F
K11562carbon
0.15max
Mn 0.61
Si 0.5
Cr0.8/1.25
Mo 0.65 

E8018-B2
E8XT1-B2
ASTM
A213 T17
>30>60 Preheat 350F >
Post heat 1100F
K12047carbon
0.25max
Mn 0.61
Si 0.35
Cr0.8/1.25
V 0.15 
E8018-B2
E8XT1-B2
ASTM
A213 T21
>30>60 Preheat 400F >
Post heat 1300F
K31545carbon
0.15max
Mn 0.6
Si 0.5
Cr2.65/3.5
Mo 1.06 

E9018-B3
E9XT-B3
ASTM
A213 T22
>30>60 Preheat <12mm 150F >12mm 250F
Post heat 1300F
K21590carbon
0.15max
Mn 0.6
Si 0.5
Cr1.9/2.6
Mo 1.13 

E9018-B3
E9XT-B3

 





   Steels Yield
 ksi
 MPa
Tensile
 ksi
 MPa
Description PREHEAT  UNS#weld Electrode
chemistry
ASTM
A214
Not Specified Carbon Steel Heat Exchanger Condenser Tubes K01807carbon 0.18max
Mn 0.27/0.63

E60XX
E7018
E70S-6
E7XT-1
ASTM
A226
>26
 179
>47
 324
Carbon steel boiler Super heater tubes 12 to 25 mm OD K01201carbon 0.16/0.18
Mn 0.27/0.63
Si 0.25max

E60XX
E70XX
E70S-3
E7XT-1
ASTM
A249
  Stainless tubes   
ASTM
A250
  Carbon Moly Boiler Super heater tubes  
ASTM
A250 T1
>30
 206
>55
 379
 preheat
>25mm 100F >50mm 200F Post Heat 1200F
K11522carbon 0.1/0.2
Mn 0.3/0.8
Si 0.1/0.5
Mo 0.44/0.6

E7018-A1
E70T5-A1
E8XT1-A1
ASTM
A250 T1a
>32
 220
>60
 413
 preheat
>12mm 100F >25mm 275F Post Heat 1200F
 carbon 0.15/0.25
Mn 0.3/0.8
Si 0.1/0.5
Mo 0.44/0.6

E7018-A1
E70T5-A1
E8XT1-A1
ASTM
A250 T1b
>28
 193
>53
 365
 preheat
>25mm 100F >50mm 200F Post Heat 1200F
K11422carbon 0.14max
Mn 0.3/0.8
Si 0.1/0.5
Mo 0.44/0.6

E7018-A1
E70T5-A1
E8XT1-A1
ASTM
A252
  Mild steel pipe
weld same as A53
   
ASTM
A268
  Ferritic stainless tube general service   
ASTM
A268 
Tp 405 
>30
 206
>60
 413
   S405000carbon
0.08max
Mn   1.0
Ni      0.5
Cr 11.5/13.5
Al 0.1/0.3

E410
ASTM
A268 
Tp 410 
>30
 206
>60
 413
 Pre heat
600F
Post heat
1400, post not req if low hyd used
S41000carbon
0.15max
Mn   1.0
Ni      0.5
Cr11.5/13.5

E410
E310
ASTM
A268 
Tp 409 
    S40900carbon
0.15max
Mn   1.0
Ni      0.5

E410
ASTM
A268 
Tp 329 
    S32900E312
E309
ASTM
A268 
Tp 430 
     E430
ASTM
A269
  stainless
tubes
   

 


What is Toughness?
The ability of the metal or weld sample at a predetermined temperature to withstand a shock. The test for toughness measures the impact of a pendulum on a notched specimen. You may see that the required impact properties for the metal or weld are 20ft-lbf @ -20 F (27 j @ -29C). Some things that can influence toughness in a weld;

[] lack of fusion.
[] excess weld heat.
[] porosity in welds and laminations in the steels.
[] weld undercut.
[] incorrect weld profiles
[] incorrect weld consumables.


   Steels Yield
 ksi
 MPa
Tensile
 ksi
 MPa
Description PREHEAT  UNS#weld Electrode
chemistry
ASTM
A333 
  Steel pipe 
for low temp Service
   
ASTM
A333-1
>30
 227
>55
 379
 Pre heat >carb >0.26 >25mm 100FK03008carbon 0.3max
Mn0.4/0.6

E7018
E70S-6
E7IT-1
E8018-C3
ASTM
A333-3

>35
>65 Pre heat
150F 
Post heat
1200F
 carbon 0.19max
Mn0.31max
Si  0.18/0.37
Ni3.16/3.82

E8018-C1
E91T1-Ni2
ASTM
A333-4 

>35
 241
>60
 413
 Pre heat <25 mm 150F
>25 mm 300F. Post heat 1200F
KO3006carbon 0.12max
Mn0.5/1.05
Si  0.08/0.37
Ni0.47/0.98
Cr 1.01
Cu0.4/0.75
AL0.04/0.30

E8018-W
E80T1-Ni2
ASTM
A333-6

>35
 241
>60
 413
 Pre heat >carb >0.26 >25mm 100F carbon 0.3max
Mn0.29/1.06
E8018-W
E7018
E70S-6
E7IT-1

E8018-C3

ASTM
A333-7 

>35
 241
>65
 
 Pre heat
150F 
Post heat
1200F
K21903carbon 0.19max
Mn0.9max
Ni 2.03/2.57

E8018-C1
E80T5-Ni2
ASTM
A333-8
>75>100 Pre heat 200F Max inter-pass 400F carbon 0.13max
Mn0.9max
Si 0.32max
Ni 8.4/9.6

Mn 0.9
Ni 8.4/9.6
ASTM
A333-9
>46
 317
>63
 434
 Pre heat
150F 
Post heat
1200F
K22035carbon 0.2max
Mn 0.4/ 1.06
Ni   1.6/2.24
Cu0.75/1.25
E8018-C1
E80T5-Ni2

 

 

What is Fatigue? The ability of a metal or weld to withstand repeated loads. Fatigue failures occur at stress levels less than the metal or weld yield strength. Some things that can influence fatigue failure:

      • Excess weld profiles.
      • Welds which cause undercut.
      • FCAW or SMAW slag inclusions.
      • Lack of weld penetration.
      • Excess weld heat, typically from multi-pass welds without inter-pass temp controls.
      • Items to a part that adds restraint while welding.
      • Items added to a part that can concentrate stresses in a specific location.
      • Incorrect selection of filler metal, weld too weak or weld too strong.

       Steels Yield
     ksi
    Tensile
     ksi
    Description PREHEAT  UNS#weld Electrode
    ASTM
    A334 
      Carbon low alloy tubes for low tem service   
    ASTM
    A334-1
    >30
     206
    >55
     379
     Preheat Carb >0.25
    or steel >25mm 100F
    K03008carbon 0.3max
    Mn 0.4/ 1.06
    E7018
    E70S-6
    E71T-1
    E8018-C3
    ASTM
    A334-3
    >35
     241
    >65
     448
     Preheat 150F 
    >25mm 250F
    post 1200F
    K31918carbon 0.19max
    Mn0.31/0.64
    Si0.18/0.37
    Ni 3.18/3.82
    E8018-C1
    E81T-1-Ni2
    ASTM
    A334-6
    >35>60 Preheat Carb >0.25
    or steel >25mm 100F
    K03006carbon 0.03max
    Mn0.29/1.06
    Si0.1min
    E7018
    E70S-6
    E71T-1
    ASTM
    A334-7
    >35>65 Preheat 150F 
    >25mm 250F
    post 1200F
    K21903carbon 0.19max
    Mn0.9max
    Si 0.13/0.3
    Ni 2.2 2.57
    E8018-C1
    E81T-1-Ni2
    ASTM
    A334-8
    >75
     517
    >100
     689
      K81340carbon 0.13max
    Mn0.9max
    Si 0.13/0.32
    Ni 8.4/ 9.6
    ASTM
    A334-9
    >46>63 Preheat 150F 
    >25mm 250F
    post 1200F
    K22035carbon 0.2max
    Mn0.4/1.06
    Ni 1.6/2.24
    Cu 0.75/1.25
    E8018-W
    E80T1-W




    What is Brittleness?
    The ease at which the weld or metal will break or crack without appreciable deformation. When a metal gets harder it becomes more brittle. Preheat, inter-pass temp controls and post heat all are designed to reduce the potential for brittleness.


       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#weld Electrode
    chemistry
    ASTM
    A335
      Ferritic Alloy Steel pipe for high temp service S50200 
    ASTM
    A335-P1
    >30
     206
    >55
     379
     preheat
    >25mm 100F >50mm 200F
    K11522carbon 0.2max
    Mn0.3/0.86
    Si 0.1/0.5

    E70XX-A1
    E70S-6
    E71T-1
    A335-P2>30
     206
    >55
     379
     preheat carb <0.15 <25mm 150F >25mm or carb >0.15 300F. Post heat >25mm 1200FK11547carbon 0.2max
    Mn0.3/0.61
    Si 0.1/0.5
    Mo0.44/0.65
    E8018-B2
    E80T5-B2
    A335-P5>30>60 preheat
    >12mm 400F post heat 1375F
    K41545carbon 0.15max
    Mn0.3/0.6
    Si 0.5
    Cr4/6
    Mo0.45/0.65
    E502T-1
    A335-P5b>30>60 preheat
    >12mm 600F post heat 1375F
    k51545carbon 0.15max
    Mn 0.6
    Si 1/2
    Cr4/6
    Mo0.45/0.65
    Cr4/6
    Mo0.45/0.65
    Si 1/2
    E502T-1
    A335-P5c>30>60Ferritic Alloy Steel pipe for high temp servicepreheat
    >12mm 600F post heat 1375F
    K41245carbon 0.12max
    Mn0.3/0.6
    Si 0.5
    Cr4/6
    Mo0.45/0.65
    Cr4/6
    Mo0.45/0.65
    Ti/Cu
    E502T-1
    A335-P7>30>60 preheat
    >12mm 600F post heat 1375F
    S50300carbon 0.15max
    Mn0.3/0.6
    Si 0.5/1
    Cr6/8
    Mo0.45/0.65
    Cr6/8
    Mo0.44/0.65
    A335-P9>30>60 preheat
    >12mm 600F post heat 1375F
    S50400carbon 0.15max
    Mn0.3/0.6
    Si 0.25/1
    Cr8/10
    Mo0.9/1.1
    E502T-1
    A335-P11>30>60 preheat <25 mm 150F >25mm 300F post heat 1200FK11597carbon 0.15max
    Mn0.3/0.6
    Si 0.5/1
    Cr1/1.5
    Mo0.44/0.65
    E8018-B2
    E80T5-B2
    A335-P12>30>60 preheat <25 mm 150F >25mm 300F post heat 1200FK11562carbon 0.15max
    Mn0.3/0.61
    Si 0.5
    Cr0.8/1.25
    E8018-B2
    E80T5-B2
    A335-P15>30>60Ferritic Alloy Steel pipe for high temp servicepreheat >12 mm 100F >25mm 200F K11578carbon 0.15max
    Mn0.3/0.61
    Si 1.15/1.65
    Mo0.44/0.65
    E7018-A1
    E70S-6
    E71T-1
    A335-P21>30>60 preheat 400F > post heat 1350F K31545carbon 0.15max
    Mn0.3/0.61
    Si 0.5
    Cr2.65/3.35
    Mo0.8/1.06
    E9018-B3
    E9T5-B3
    A335-P22>30>60Ferritic Alloy Steel pipe for high temp servicepreheat <25 mm 150F >25mm 300F post heat 1300FK21590carbon 0.15max
    Mn0.3/0.6
    Si 0.5
    Cr1.9/2.6
    Mo0.87/1.13
    E9018-B3
    E9T5-B3

     

     

       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#Weld Electrode
    Chemistry
    ASTM
    A369
    FP1-FP2
    FP3b-FP5
    FP7-FP9
    FP11-FP12
    FP21-FP22
    FPA-FPB
      Carbon and ferritic alloy forged bored pipe
    high temp service
       
    A369
    FP1
    >30
     206
    >60
     413
     preheat
    >25mm 150F Post heat req 1200F
    K11522carbon 0.2
    Mn0.3/0.8
    Si0.1/0.5
    Mo0.44/0.65
    E7018-A1
    E70T5-A1
    A369
    FP2
    >30
     206
    >55
     
     preheat
    <13mm 100F
    <25mm
    250F
    >25mm 400F Post heat req >25mm
    1200F
    K11547carbon 0.1/0.2
    Mn0.3/0.61
    Si0.3
    Cr0.5/0.81
    Mo0.44/0.65

    E8018-B2
    E80T1-B2

    A369
    FP3b
    >30
     206
    >60
     413
     preheat
    >13mm 150F
    <50mm 250F Post heat req 1200F
    K21509carbon 
    0.15
    Mn0.3/0.6
    Si 0.5
    Cr1.65/2.35
    Mo0.44/0.65
    E9018-B3
    E90T5-B3
    A369
    FP5
    >30
     206
    >60
     413
     preheat
    >12mm 600F
    Post heat req 1375F
    K41545carbon 
    0.15
    Mn0.3/0.6
    Si 0.5
    Cr 4/6
    Mo0.44/0.65
    E502T-1
    A369
    FP7
    >30
     206
    >60
     413
     preheat
    >12mm 600F
    Post heat req 1375F
    S50300carbon 
    0.15
    Mn0.3/0.6
    Si 0.5/1
    Cr 6/8
    Mo0.44/0.65
    A369
    FP9
    >30
     206
    >60
     413
     preheat
    >12mm 600F
    Post heat req 1375F
    K90941carbon 
    0.15
    Mn0.3/0.6
    Si 0.5/1
    Cr 8/10
    Mo0.9/1.1
    A369
    FP11
    >30
     206
    >60
     413
     preheat
    <25mm 150F
    >25mm
    300F
    Post heat req 1200F
    K11597carbon 
    0.15
    Mn0.3/0.6
    Si 0.5/1
    Cr 1/1.5
    Mo0.44/0.65
    E8018-B2
    E80T1-B2
    A369
    FP12
    >30
     206
    >60
     413
     preheat
    <25mm 150F
    >25mm
    300F
    Post heat req 1200F
    K11562carbon 
    0.15
    Mn0.3/0.61
    Si 0.5
    Cr 0.8/1.25
    Mo0.44/0.65
    E8018-B2
    E80T1-B2
    A369
    FP21
    >30
     206
    >60
     413
     preheat
    500F
    Post heat req 1350F
    K31545carbon 
    0.15
    Mn0.3/0.6
    Si 0.5
    Cr 2.65/3.35
    Mo0.8/1.06
    E9018-B3
    E90T5-B3
    A369
    FP22
    >30
     206
    >60
     413
     preheat
    <25mm 175F
    >25mm
    275F
    Post heat req 1300F
    K21590carbon 
    0.15
    Mn0.3/0.6
    Si 0.5
    Cr 1.9/2.6
    Mo0.87/1.13
    E9018-B3
    E90T5-B3
    A369
    FPA
        K02501E7018
    E71T-1
    A369
    FPB
        K03006E7018
    E71T-1
    ASTM
    A381
    Y35-Y42
    Y46-Y48
    Y50-Y52
    Y56
    Y60 -Y65
    35-6560-80High pressure pipepreheat
    carbon <0.2 >25mm 50F >25mm 100F

    preheat
    carbon >0.2 >25mm 150F >25mm 250F

    K03013Carbon
    0.26
    Mn1.40max


    Y35 To Y56
    E70XX
    E71T-1

    Y60 To Y65
    E9018-M

    ASTM
    A405
      Ferritic alloy steel pipe high temp service   
    A405
    P24
    30-5060-80
    413-551
     preheat <25mm 175F >25mm 300F post heat req 1200FK11591carbon 0.15
    Mn 0.6Ce 0.8/1.25
    Mo 0.87/1.13
    v 0.25
    E8018-B2
    E9018-B3
    E80T5-B2
    ASTM
    A423
    1-2
      Low alloy tube   
    ASTM
    A423-1
    >37
     255
    >60
     413
      K11535Carbon 0.15
    Mn 0.55
    Si 0.1
    Ni 0.2/0.7
    Cr 0.24/1.31

    E8018-B2
    ASTM
    A423-2
    >37
     255
    >60
     413
     preheat refer to ASMEK11540Carbon 0.15
    Mn 0.5/1
    Si 0.1
    Ni 0.4/1.1
    Mo 0.1
    Cu 0.3/1

    E88018-C3
    ASTM
    A426
      Cast ferritic alloy pipe high temp service   

     


    What is Malleability?
    The ability of a metal or weld to be permanently deformed by compression such as in a rolling or forming operation. Ductile metals are malleable.


       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#weld Electrode
    chemistry
    ASTM
    A426
      Cast ferritic alloy pipe high temp service   
    A426
    CP1
    >35
     
    >65
     
     preheat 12-25mm
    100F>25mm 200F post heat req 1200f
    J12521carbon
    0.25
    Mn0.8
    Si 0.5
    Mo 0.65
    E7018-A1
    E70T5-A1
    A426
    CP2
    >30
     206
    >60
     413
     preheat <12mm
    150F<25mm 250F >25 mm 400F post heat req 1200f
    J11547carbon
    0.2
    Mn0.61
    Mo 0.65
    Cr 0.8
    A426
    CP5
    >60>90 preheat >12mm
    600Fpost heat req 1375F
    J42045carbon
    0.2
    Mn0.7
    Mo 0.65
    Cr 6.5
    E502T-1

    A426
    CP5b
    >30
     206
    >60
     413
     preheat >12mm
    600Fpost heat req 1375F
    J51545carbon
    0.15
    Mn0.6
    Si 2
    Mo 0.6
    Cr 6
    E502T-1
    A426
    CP7
    >30>65 preheat >12mm
    600Fpost heat req 1375F
    J61594carbon
    0.15
    Mn0.6
    Si 1
    Mo 0.65
    Cr 8
    A426
    CP9
       preheat >12mm
    600Fpost heat req 1375F
    J82090carbon
    0.2
    Mn0.65
    Si 1
    Mo 1.2
    Cr 10
    E505T-1
    A426
    CP11
    >40>70 preheat <12mm
    150F <25mm 250F >25mm 350F post heat req 1200F
    J12072carbon
    0.2
    Mn0.65
    Mo 0.65
    Cr 1.5
    E8018-B2
    E80T-B2
    A426
    CP12
    >30
     206
    >60
     413
     preheat <12mm
    100F >12mm 250F >25mm 350F post heat req 1200F
    J11562E8018-B2
    E80T-B2
    A426
    CP15
       preheat >12mm
    100F >25mm 200F post heat opt
    J11522E7018-A1
    E70T5-A1
    A426
    CP21
       preheat <100mm
    500F post heat req 1350F
    J31545carbon
    0.15
    Mn0.6
    Mo 1.06
    Cr 3.35
    E9018-B3
    E90T1-B3
    A426
    CP22
    >40>70 preheat <25mm
    200F >25mm 400F post heat req 1300F
    J21890carbon
    0.18
    Mn0.7
    Mo 1.2
    Cr 2.75
    E9018-B3
    E90T1-B3
    A426
    CPCA15
        J91150carbon
    0.15
    Mn 1
    Mo 05
    Cr 14
    E410
    ASTM
    498
      condenser tubes
    conforms to A199/A179
    A213/A249/A334
       

     



    What is grain size?
    A good way to demonstrate the effect of the grain size on a metal or weld. Take a full length wooden pencil, then break it in half, now break the two halves in two, try it again. You will note how difficult it is to break the smaller pieces. When we weld, the heat from the weld can make the grains in the base metal elongate, as the weld cools down the grains will get smaller. If we are doing multi-pass welds such as welding in the vee-prep of a pipe, and we don't have inter-pass, or post heat controls the welds may look good, however the high energy from the mult-pass welds may result in grain size greater than that approved by the pipe / steel manufactures. In fatigue situations, elongated grains can influence failure.



       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#Weld Electrode
    Chemistry
    ASTM
    A500
      Structural steel cold formed tube   
    A500-A
    33-39

    >45
      K03000carb 0.26
    Mn 1.1
    Cu 0.2min
    E7018 if Cu specified
    E8018W
    E80T1-W
    A500-B42-46>58  K03000carb 0.26
    Mn 1.1
    Cu 0.2min
    E7018 if Cu specified
    E8018W
    E80T1-W
    A500-C>46
     317
    >62
     427
      K02705carb 0.23
    Mn 1.35
    Cu 0.2min
    E7018 if Cu specified
    E8018W
    E80T1-W
    ASTM
    A501
    >36>58Hot formed carbon steel tubes structural    carbon 0.26
    Mn 1.1
    Cu 0.2

    E7018 if Cu specified
    E8018W
    E80T1-W
    ASTM
    A511
      Stainless mechanical tubing   
    ASTM
    A512
      Cold drawn carb stell mech tubing
    Conform to AISI
      WELD SAME AS A216
    ASTM
    A513
      Resistance
    welded carbon and alloy steel mechanical tubing. Conforms to AISI
      WELD SAME AS A161
    ASTM
    A519
      Seamless carbon and alloy steel mechanical tubes. Conforms to AISI   WELD SAME AS A161



    HAVE YOU EVER PURCHASED A BOOK ON WELDING?
    Most welding books can be boring and few provide practical, cost effective weld data. My books are easy to read and every page will make you a weld process expert.

     

     

       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#Weld Electrode
    Chemistry
    ASTM
    A523
          
    A523-A>30
    >48
      K02504carbon
    0.22
    0.21
    Mn 0.9
    E60XX
    E70XX
    E71T-1
    A523-B>35>60  KO3005carbon
    0.26
    0.27
    Mn 1.15
    E60XX
    E70XX
    E70S-6
    E71T-1
    ASTM
    A524
      seamless carbon steel pipe low temp applications   
    A524-1-2>35 60-85  K02104carbon 0.21
    Mn 0.9/1.35
    Si0.4
    E60XX
    E70XX
    E70S-6
    E71T-1
    ASTM
    A539
      weld same as A161   
    ASTM
    A556
    A557
    A2-B2-C2
      
    feed water heater tubes weld same as A161
       
    ASTM
    A587
    >30>48Low carbon steel pipe for chemical use K11500carbon
    0.15
    Mn 0.63
    Al 0.1/0.2
    E60XX
    E70XX
    E70S-6
    E71T-1



    Ed, why can't we use an E71T-1 flux cored wire and weld the pipe root pass and also weld the pipe fill passes vertical down?

    You don't want to use the flux cored process for roots or any gaps, as the arc energy is too high, also when welding vertical down with a flux cored wire, you will trap the fast freeze slag.




       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#weld Electrode
    chemistry
    ASTM
    A589
    >25>45Carbon steel water well pipe  butt welded

    carbon
    0.2
    Mn 0.3/0.6

    E60XX
    E70XX
    E70S-6
    E71T-1

    A589-A>30>48   carbon
    0.25
    Mn 0.9

    E60XX
    E70XX
    E70S-6
    E71T-1
    A589-B>35>60   carbon
    0.3
    Mn 1.2
    E60XX
    E70XX
    E70S-6
    E71T-1
    ASTM
    A595
      low carbon steel tubes tapered for structural   
    A595-A>55>65  K02004carbon
    0.15/0.25
    Mn 0.3/0.9
    Si 0.4
    E70XX
    E70S-6
    E71T-1
    A595-B>60>70  K02005carbon
    0.15/0.25
    Mn 0.4/1.35
    Si 0.4
    E70XX
    E70S-6
    E71T-1
    A595-C>60>70 if galvanized use E70S-3 rather than E70S-6 K11526carbon
    0.12
    Mn 0.2/0.5
    Ni 0.65
    Si 0.75
    Cr0.3/1.25
    Cu 0.25/0.55
    E70XX
    E70S-6
    E71T-1
    ASTM
    A618
      seamless high strength low alloy structural tubes   
    A618-1    K02601 
    A618-11>50>70  K12609carbon
    0.22
    Mn 0.85/1.5
    Cu 0.2
    Si 0.3
    V 0.02
    E70XX
    E70S-6
    E71T-1
    A618-111    K12700 
    A618-1a>50>70   carbon
    0.15
    Mn 1
    Cu 0.2
    E70XX
    E70S-6
    E71T-1
    A618-1b>50>70   carbon
    0.2
    Mn 1.35
    Cu 0.2
    E70XX
    E70S-6
    E71T-1
    ASTM
    A660
      cast carbon steel pipe  E70XX
    E70S-6
    E71T-1

     






    1990s: Ed Teaching Jessie, age 11,
    how to do the pipe MIG root pass




     
       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#Weld Electrode
    Chemistry
    ASTM
    A671
      Steel pipe for low temp applications  conforms to ASTM  A203/A285
    /A299/A355
    and many
    others. Check ASTM plate 
    ASTM
    A672
      high pressure pipe for medium temp service  conforms to ASTM  A202/A204
    /A225/A285
    and many
    others. Check ASTM plate 
    A672-D80
    E55-E60
         E8018-C3
    A672-H75
    M75-N75
         E9018-M
    A672-H80
    J80-J90-
    K75-M70
         E9018-M
    A672-L75
    J100
         E10018-M
    ASTM
    A691
      if Cr 0.5/2. 25  weld with E8018-B2  conforms to 204/299
    /A387/A537
    Check out ASTM plate
    A691-CM/65     E7018-A1
    A691-CM-70     E7018-A1
    A691-CM-75     E10018-M
    A691-CMSH-70     E7018
    A691-CMS     E9018-M
    A691-CMSH-80     E8018-C3

     

     

     

     

       Steels Yield
     ksi
     MPa
    Tensile
     ksi
    MPa
    Description PREHEAT  UNS#Weld Electrode
    Chemistry
    ASTM
    A692
    >4264 - 84Medium strength carb moly alloy boiler tubes K12121carbon0.17
    Mn0.46/0.94
    Si 0.18/0.37
    Mo0.42/0.68
    E7018-A1
    E71T-1
    E70S-6
    ASTM
    A714
      High strength low alloy seamless steel pipe   
    A714-1>50>70 preheat >12mm 50F >25mm 100FK12608CL2
    Carbon 0.22
    Mn 1.25
    Cu 0.2
    E7018
    E71T-1
    E70S-6
    A714-11>50>70 preheat >12mm 50F >25mm 100FK12609CL2
    Carbon 0.22
    Mn0.85/1.25
    Cu 0.2
    V  0.02
    E7018
    E71T-1
    E70S-6
    A714-111>50>65 preheat >12mm 50F >25mm 100FK12709CL2
    Carbon 0.23
    Mn 1.35
    Cu 0.2
    V  0.02
    E7018
    E71T-1
    E70S-6
    A714--1V>36>58 preheat to 1.2 carb   >12mm 50F
    >25mm 100F
    K11356CL4
    Carbon 0.1
    Mn 0.6
    Ni 0.2/0.5
    Cr 0.8/1.2
    Cu 0.45
    V  0.02
    E7018
    E71T-1
    E70S-6
    A714-V>40
    (E&S)
    >46
    >55
    (E&S)
    >65
     preheat to 1.2 carb   >12mm 50F
    >25mm 100F
    K22035CL4-pF
    Carbon 0.16
    Mn 0.41
    Ni 1.65
    Cu 0.08
    E8018-C1
    A714-V1   preheat to 1.2 carb   >12mm 50F
    >25mm 100F
    K11835CL4-Tp ES
    Carbon 0.15
    Mn 0.5/1
    Ni 0.4/1.1
    Cu 0.3
    Mo 0.2
    Cu 0.3/1
    E8018-C3
    A714-V11>45>65 preheat to 1.2 carb   >12mm 50F
    >25mm 100F
     CL4-Tp ES
    Carbon 0.12
    Mn 0.5
    Ni 0.65
    Cu 0.3/1.25
    Mo 0.2
    Cu 0.55
    A714-V111>50>70 preheat to 1.2 carb   >12mm 50F
    >25mm 100F
     CL4-Tp ES
    Carbon 0.19
    Mn 1.25
    Ni 0.4/
    Cr 0.65
    Cu 0.4
    V 0.1

     

    Visit the MIG and flux cored pipe weld data section


    If you are teaching your self, or providing weld process control training for others, the following resources are the key to attaining MIG and flux cored weld process optimization.

    Item.1. The Book: "A Management & Engineers Guide To MIG Weld Quality, Productivity & Costs"

    Item 2.
    A unique robot MIG training or self teaching resource.
    "Optimum Robot MIG Welds from Weld Process Controls".


    Item 3.
    A unique MIG training or self teaching resource.
    " Manual MIG Weld Process Optimization from Weld Process Controls".

    Item. 4. A unique flux cored training or self teaching resource.
    "Optimum Manual and Automated Flux Cored Plate and Pipe welds.

    Item 5a."Proceso de Soldadura MIG Manual" (MIG Made Simple. Self teaching in Spanish)

    Item 6a. The Self Teaching MIG Book/ Video. (MIG Made Simple in English).

    Note: Items 2-3-4 are the most comprehensive process control, self teaching and training programs ever developed..

    Visit Ed's MIG / flux cored process control books and CD training resources.

     




     

    The best weld quality is delivered by TiP TiG.